АСПСП

Цитата момента



Твоя жизнь движется к финишу со скоростью 24 часа в сутки.
А мы ее — обгоним!

Синтон - тренинг центрАссоциация профессионалов развития личности
Университет практической психологии

Книга момента



Пришел однажды к мудрецу человек и пожаловался на то, что, сколько добра он не делает другим людям, те не отвечают ему тем же, и потому нет никакой радости в его душе:
— Я несчастный неудачник, — сказал человек, вздохнув.
— Ты в своей добродетели, — сказал мудрец, — похож на того нищего, который хочет умилостивить встречных путников, отдавая им то, что необходимо тебе самому. Поэтому и нет радости ни им от таких даров, ни тебе от таких жертв…

Александр Казакевич. «Вдохновляющая книга. Как жить»

Читайте далее >>


Фото момента



http://old.nkozlov.ru/library/fotogalereya/s374/
Мещера-2010

д) Логические контрапримеры против эвристических

Альфа. Мне нравится Правило 5[139] Дзеты так же, как и Правило 4 [140] Омеги. Мне нравился метод Омеги за то, что он искал локальные, а не глобальные контрапримеры, как раз те самые, которые первоначальными тремя правилами Ламбды[141] игнорировались как логически безобидные и, следовательно, эвристически неинтересные. Омега был ими побужден к изобретению новых мысленных экспериментов: реальный прогресс в нашем знании!

Теперь Дзета вдохновляется контрапримерами, которые одновременно являются и локальными, и глобальными — прекрасными подтверждениями с логической, но не с эвристической точки зрения; хотя они и подтверждения, но все же призывают к действию. Дзета предлагает распространить, сделать усложненным наш первоначальный мысленный эксперимент, превратить логические подтверждения в эвристические, логически удовлетворительные примеры в такие, которые будут удовлетворительными и с логической, и с эвристической точки зрения.

И Омега, и Дзета стоят за новые идеи, тогда как Ламбда, и особенно Гамма, заняты лишь лингвистическими трюками с их неуместными глобальными, но не локальными контрапримерами — единственными существенными с их причудливой точки зрения.

Тета. Так что же, логическая точка зрения будет «причуднической»?

Альфа. Если это ваша логическая точка зрения, то да. Но я хочу сделать еще одно замечание. Увеличивает ли дедукция содержание или нет — заметьте, что она, конечно, это делает — она, по-видимому, наверняка гарантирует непрерывный рост знания. Мы начинаем с одной вершины и заставляем знание расти насильственно и гармонически для выяснения соотношения между числами вершин, ребер и граней какого угодно многогранника: чистый не драматический рост без опровержений!

Тета. (Каппе). Разве Альфа потерял способность суждений? Начинают с задачи, а не с вершины[142]!

Альфа. Эта постепенная, но неодолимо победоносная кампания приведет нас к теоремам, которые «не являются сами по себе очевидными, но только выведены из истинных и известных принципов при помощи постоянного и непрерывающегося действия ума, который отчетливо видит каждый шаг процесса» [143]. Эти теоремы никак не могут быть получены «беспристрастным» наблюдением и внезапной вспышкой интуиции.

Тета. В этой окончательной победе я все же сомневаюсь. Такого рода рост никогда не приведет нас к цилиндру — так как (1) начинает с вершины, а у цилиндра их нет. Также, может быть, мы никогда не достигнем односторонних многогранников или многогранников с большим числом измерений.

Это постепенное непрерывное распространение вполне может остановиться на какой-нибудь точке и вам придется ждать нового революционного толчка. И даже такая «мирная непрерывность» полна опровержений и критики! Что заставляет нас идти от (4) к (5), от (5) к (6) и от (6) к (7), как не постоянное давление контрапримеров, являющихся и глобальными, и локальными? В качестве подлинных контрапримеров Ламбда принимал только такие, которые являются глобальными, но не локальными: они обнаруживают ложность теоремы. Правильно оцененным Альфой было нововведение Омеги — в качестве подлинных контрапримеров рассматривать и такие, которые являются локальными, но не глобальными: они обнаруживают, что теорема бедна истиной. Теперь Дзета советует нам считать подлинными и такие контрапримеры, которые являются и глобальными, и локальными: они тоже обнаруживают у теоремы бедность истиной. Например, картинные рамы для теоремы Коши будут и глобальными, и локальными контрапримерами: они, конечно, будут подтверждениями, если рассматривать одну только истину, но опровержениями, если рассматривать содержание. Мы можем первые (глобальные, но не локальные) контрапримеры назвать логическими, а остальные — эвристическими контрапримерами. Но чем больше мы признаем опровержений — логических или эвристических — тем быстрее растет знание. Логические контрапримеры Альфа считает неуместными, а эвристические контрапримеры вообще отказывается называть контрапримерами и все по причине его одержимости идеей, что рост математического знания непрерывен и критика не играет никакой роли.

Альфа- Понятие об опровержении и понятие о критике вы искусственно распространяете только для того, чтобы оправдать вашу критическую теорию роста знания. Разве лингвистические хитрости могут быть орудиями философов?

Пи. Я думаю, что обсуждение образования понятий поможет нам выяснить исход спора.

Гамма. Мы все навострили уши.

8. Образование понятий

а) Опровержение при помощи расширения понятий. Переоценка устранения монстров и пересмотр понятий ошибки и опровержения

Пи. Я хотел бы сначала вернуться назад в период до Дзеты или даже до Омеги, к трем основным методам формирования теории: устранению монстров, устранению исключений и методу доказательств и опровержений. Оба они начинали с одной и той же наивной догадки, но кончили различными теоремами и различными теоретическими терминами. Альфа уже очертил некоторые аспекты этих различий[144], но его обзор недостаточен — особенно в случае устранения монстров и метода доказательств и опровержений. Альфа думал, что устраняющая монстры теорема «за тождеством лингвистического выражения скрывает существенное улучшение» наивной догадки: он думал, что Дельта класс «наивных» многогранников постепенно сжимал в класс, очищенный от неэйлеровых монстров.

Гамма. А что было дурного в обзоре Альфы?

Пи. То, что не устранители монстров сжимают понятия, это опровергатели расширяют их.

Дельта. Слушайте, слушайте!

Пи. Вернемся назад ко времени первых исследователей нашего вопроса. Они были зачарованы прекрасной симметрией правильных многогранников; они думали, что пять правильных тел содержат тайну космоса[145]. В то время была выставлена догадка Декарта — Эйлера, и понятие многогранника включало всякого сорта выпуклые многогранники и даже некоторые с вогнутостями. Но тогда это понятие не включало многогранников, которые не были простыми, или многогранников с кольцеобразными гранями. Для всех многогранников, которые тогда имелись в виду, догадка в ее тогдашнем состоянии была правильна и доказательство не имело погрешностей[146] .

Затем выступили опровергатели. В своей критической ревности они расширяли понятие многогранника, чтобы покрыть предметы, которые были чуждыми предложенному истолкованию. В предположенном истолковании догадка была верной, она оказалась неправильной только в непредполагавшемся истолковании, внесенном контрабандой опровергателями. Их «опровержение» не обнаружило ни неверности в первоначальной догадке, ни ошибки в первоначальном доказательстве; оно обнаружило только ложность новой догадки, которую никто не выставлял и о которой никто еще раньше не думал.

Бедный Дельта! Он храбро защищал первоначальное толкование многогранника. Он противодействовал каждому контрапримеру новым ограничением для спасения первоначального понятия…

 Гамма. Но разве не Дельта изменял каждый раз своей позиции? Когда мы выставляли новый контрапример, он менял свое определение на более длинное, которое обнаруживало еще одно из его скрытых «ограничений»!

Пи. Какая чудовищная переоценка устранения монстров! Он только казался изменяющим свою позицию. Вы несправедливо обвиняли его в пользовании потайными терминологическими эпициклами в защиту упорной идеи. Его несчастием было это пышное Определение 1: «Многогранником называется тело, поверхность которого состоит из многоугольных граней», за которое опровергатели сразу же и ухватились. Но Лежандр предполагал покрыть им только свои наивные многогранники; что оно покрывало гораздо большее число, этого предложивший и не понял и не намеревался понять. Математическая публика была готова проглотить чудовищное содержание, которое медленно выплывало из этого правдоподобного, невинного по виду определения. Вот почему Дельте приходилось все время лепетать: «Я думал…» и продолжать выявление своих бесконечных «молчаливых» ограничений; все это потому, что наивное понятие никогда не было закреплено, и простое, но чудовищное, непредполагавшееся определение вытеснило его. Но вообразим другую ситуацию, когда определение правильно фиксировало предположенное толкование «многогранника». Тогда опровергателям пришлось бы выдумывать все более длинные определения, включающие монстры, скажем, для «комплексных многогранников»: «Комплексным многогранником называется агрегат (реальных) многогранников, таких, что каждая пара их спаяна конгруэнтными гранями». «Грани комплексных многогранников могут быть комплексными многоугольниками, которые являются агрегатами (реальных) многоугольников, таких, что каждая пара их спаяна конгруэнтными ребрами». Такой комплексный многогранник будет соответствовать рожденному опровержением понятию многогранника у Альфы и Гаммы — первое определение допускало также многогранники не являвшиеся простыми, а второе — грани, которые не были односвязными. Таким образом, изобретение новых определений не будет необходимым делом устранителей монстров или охранителей понятий — им могут также заниматься включатели монстров или распространители понятий[147].

Сигма. Понятия и определения — т. е. предположенные понятия и непредполагавшиеся определения — могут тогда устраивать хитрые штуки одно другому. Я никогда не думал, что образование понятий может тянуться вслед за бессознательно широким определением!

Пи. Да, может. Устранители монстров только сохраняют первоначальное определение, тогда как расширители понятий увеличивают его; любопытная вещь заключается в том, что расширение понятий идет скрыто; никто этого не сознает и так как «координатная система» всякого человека расширяется по мере того, как увеличивается объем понятий, то он становится жертвой эвристического обмана зрения, что устранение монстров сужает понятия, тогда как в действительности оно сохраняет их неизменными.

Дельта. Тогда кто же был интеллектуально нечестным? Кто сделал тайные изменения в своей позиции?

Гамма. Я допускаю, что мы были неправы, обвиняя Дельту за скрытые сжатия его понятия о многограннике; .все шесть его определений означали то же самое доброе старое понятие о многограннике, которое он унаследовал от своих предков. Он определял одно и то же бедное понятие в возрастающем богатстве теоретических форм выражения или языков; устранение монстров не образует понятий, но только переводит определения на другой язык. Устраняющая монстры теорема не представляет улучшения наивной догадки.

Дельта. Вы считаете, что все мои определения были логически эквивалентными?

Гамма. Это зависит от вашей логической теории — по моей они, конечно, не были такими.

Дельта. Вы должны сознаться, что такой ответ не очень помогает. Но скажите мне, опровергали ли вы наивную догадку? Вы опровергали ее, только извращая тайком ее первоначальное толкование!

Гамма. Ну, мы опровергли ее более интересным толкованием, заставляющим работать воображение, как вы и не грезили. Это-то и составляет разницу между опровержениями, которые только обнаруживают глупую ошибку, и опровержениями, являющимися большими событиями в росте знания. Если вследствие неумения считать вы нашли бы, что «для всех многогранников V — E+F=1» и я исправил бы вас, то я не назвал бы это «опровержением».

Бета. Гамма прав. После откровения Пи мы могли бы колебаться называть наши контрапримеры логическими контрапримерами, так как они все же не являются несовместными с догадкой в ее первоначально предполагавшемся толковании: однако они определенно будут эвристическими контрапримерами, так как побуждают рост знания. Если бы нам пришлось принять узкую логику Дельты, то знание не возрастало бы. Предположим, что кто-нибудь с узкой системой понятий познакомится с данным Коши доказательством эйлеровой теоремы. Он найдет, что все этапы этого мысленного эксперимента легко могут быть выполнены на любом многограннике. Он примет как очевидный, не вызывающий сомнения «факт», что все многогранники являются простыми и что все грани односвязны. Ему никогда не придет в голову превратить свои «очевидные» леммы в условия для некоторой исправленной догадки и таким образом построить теорему, — потому что отсутствует стимул контрапримеров, показывающих, что некоторые «тривиально истинные» леммы неверны. Таким образом, он будет думать, что «доказательство» без всякого сомнения устанавливает истинность наивной догадки, что ее правильность вне всяких сомнений. Но его «уверенность» совсем не будет признаком успеха, она только симптом отсутствия воображения, концептуальной бедности. Она создает уютную удовлетворенность и препятствует росту знания[148].

б) Рожденное доказательством понятие против наивного. Теоретическая классификация против наивной.

Пи. Давайте вернемся к рожденной доказательством теореме «Все простые многогранники с односвязными гранями будут эйлеровыми». Эта формулировка может ввести в заблуждение. Нужно так: «Все простые объекты с односвязными гранями будут эйлеровыми».

Гамма. Почему?

Пи. Первая формулировка заставляет думать, что класс простых многогранников, встречающихся в этой теореме, является подклассом класса «многогранников» наивной догадки.

Сигма. Конечно, класс простых многогранников будет подклассом многогранников. Понятие «простого многогранника» сужает первоначальный широкий класс многогранников, ограничивая их теми, для которых выполняется первая лемма нашего доказательства. Понятие «простого многогранника с односвязными гранями» указывает на дальнейшее сужение первоначального класса…

Пи. Нет! Первоначальный класс многогранников содержал только те многогранники, которые были простыми и грани которых были односвязными. Омега ошибался, когда говорил, что включение лемм уменьшает содержание[149].

Омега. Но разве каждое включение лемм не исключает контрапример?

Пи. Конечно, исключает; но контрапример был произведен расширением понятия.

Омега. Значит включение леммы сохраняет содержание, как и устранение монстров?

Пи. Нет. Включение леммы увеличивает содержание; устранение же монстров нет.

Омега. Что? Вы действительно хотите убедить меня, что включение леммы не только не уменьшает содержания, но даже, что оно увеличивает его? Что вместо сужения понятий оно их расширяет?

Пи. Совершенно верно. Послушайте. Был ли элементом первоначального класса многогранников глобус, на котором нарисована политическая карта?

Омега. Конечно, нет.

Пи. Но он сделался им после доказательства Коши. Потому что вы без малейшего затруднения можете выполнить на нем доказательство Коши — если только на нем нет кольцеобразных стран или озер[150].

Гамма. Это верно! Если вы надуете многогранник в шар и измените ребра и грани, вы ничуть не помешаете выполнению доказательства — пока искажение не изменит числа вершин, ребер и граней.

Сигма. Я вижу, что вы хотите сказать. Тогда рожденный доказательством «простой многогранник» будет не только сужением, спецификацией, но также и обобщением, распространением наивного «многогранника»[151]. Идея такого обобщения понятия многогранника, чтобы оно могло включить смятые, криволинейные «многогранники» с искривленными гранями, вряд ли могла прийти кому-нибудь в голову до доказательства Коши; даже если бы это случилось, то идея была бы отброшена как причуда. Но теперь это является естественным обобщением, так как операции нашего доказательства могут быть для них истолкованы так же хорошо, как и для обыкновенных простых многогранников с прямыми ребрами и плоскими гранями[152].

Пи. Хорошо. Но вам придется сделать еще один шаг. Рожденные доказательством понятия не представляют ни «спецификаций», ни «обобщений» наивных понятий: напор доказательств и опровержений на наивные понятия еще более революционен, чем это — они полностью уничтожают основные наивные понятия и заменяют их понятиями, рожденными доказательством[153]. Наивный термин «многогранник», даже после его расширения опровергателями, обозначал нечто похожее на кристалл, тело с «плоскими» гранями и прямыми ребрами. Идеи доказательства полностью проглотили и переварили это наивное понятие. В различных теоремах, рожденных доказательством, от этого наивного понятия ничего не осталось. Оно бесследно исчезло. Вместо этого каждое доказательство выявляет его характерные, рожденные доказательством понятия, которые касаются возможностей быть растянутым, надутым, фотографированным, проектированным и тому подобное. Старая задача исчезла, появились новые. После Колумба не следует удивляться, если человек не решает ту задачу, которую он поставил себе для решения.

Сигма. Таким образом «теория твердых тел», — первоначальное «наивное» царство эйлеровой догадки,— исчезает, новая переработанная догадка проявляется в проективной геометрии, когда ее доказал Жергонн, в аналитической топологии, когда ее доказал Коши, в алгебраической топологии, когда ее доказал Пуанкаре…

Пи. Совершенно верно. И теперь вы поймете, почему я не формулирую теоремы, как Альфа или Бета: «Все жергонновы многогранники являются эйлеровыми», «Все многогранники Коши являются эйлеровыми» и так далее, но скорее так: «Все жергонновы объекты являются эйлеровыми», «Все объекты Коши являются эйлеровыми» и так далее[154]. Таким образом, я не считаю возможным ссориться не только из-за точности наивных понятий, но также из-за истинности или ложности наивных догадок.

Бета. Но, конечно, мы можем сохранить термин «многогранник» для нашего излюбленного, рожденного доказательством термина, например, «объектов Коши»?

Пи. Если хотите, но помните, что ваш термин уже не обозначает более того, для обозначения чего он был выдуман, что наивное понимание исчезло и что теперь он употребляется…

Бета… для более общего, исправленного понятия!

Тета. Нет! Для совершенно отличного, нового понятия.

Сигма. Я думаю, что ваши взгляды парадоксальны!

Пи. Если под парадоксальным вы понимаете «мнение пока еще не общепризнанное»[155] , и возможно несовместимое с некоторыми из ваших укоренившихся наивных идей, то не беспокойтесь: вам только придется ваши наивные идеи заменить парадоксальными. Это может быть способом «решения» парадоксов. Но какое частное мое мнение вы имеете в виду?

Сигма. Вы помните, мы нашли, что некоторые звездчатые многогранники являются эйлеровыми, другие же нет. Мы искали доказательства, которое было бы достаточно глубоким для объяснения эйлеровости как обыкновенных, так и звездчатых многогранников…

Эпсилон. У меня оно есть[156].

Сигма. Я знаю. Но для целей аргументации представим, что у нас такого доказательства не имеется, но что в добавление к доказательству Коши для «обыкновенных» эйлеровых многогранников кто-то предлагает соответственное, но совершенно различное, доказательство для эйлеровых звездчатых многогранников. Захотели бы вы тогда, Пи, вследствие этих двух различных доказательств, предложить разбиение на два того, что мы ранее классифицировали как нечто единое? И захотели ли вы также объединить под одним именем две совершенно различные вещи только вследствие того, что кто-то нашел общее объяснение для некоторых из их свойств?

Пи. Конечно, я так бы и сделал. Ясно, что я не захотел бы назвать кита рыбой, или радио — шумовым ящиком (как могут назвать туземцы), но я не выхожу из себя, когда физик назовет стекло жидкостью. Действительно наивную классификацию прогресс заменяет теоретической классификацией, т. е. классификацией, рожденной теорией (доказательством или, если хотите, объяснением). И догадки, и понятия одинаково должны пройти через чистилище доказательств и опровержений. Наивные догадки и наивные понятия заменяются исправленными догадками (теоремами) и понятиями (рожденными доказательством или теоретическими), вырастающими из метода доказательств и опровержений. И как теоретические идеи и понятия вытесняют наивные идеи и понятия, так и теоретический язык вытесняет наивный[157].

Омега. В конце концов от наивной, случайной, чисто номинальной классификации мы придем к окончательной, истинной, реальной классификации, к совершенному языку[158].



Страница сформирована за 1.47 сек
SQL запросов: 170