Магическая матрица
Почему начерченная нами матрица заставляет вас всегда выбирать четыре числа, дающие в сумме 34? Секрет этой матрицы прост и изящен. Над каждым столбцом матрицы 4x4 выпишем числа 1, 2, 3. 4, а слева от каждой строки выпишем числа 0, 4, 8, 12:
1 |
2 |
3 |
4 |
|
0 |
||||
4 |
||||
8 |
||||
12 |
Эти 8 чисел называются генераторами, или образующими, магической матрицы, В каждую клетку впишем число, равное сумме двух генераторов, стоящих у той строки и того столбца, на пересечении которых расположена клетка. Вписав все числа, мы получим матрицу, клетки которой перенумерованы по порядку числами от 1 до 16:
1 |
2 |
3 |
4 |
|
0 |
1 |
2 |
3 |
4 |
4 |
5 |
6 |
7 |
8 |
8 |
9 |
10 |
11 |
12 |
12 |
13 |
14 |
15 |
16 |
Посмотрим, что произойдет, если мы выберем 4 числа в соответствии с описанной выше процедурой. Она гарантирует, что никакие два обведенные кружками числа не окажутся в одной строке или в одном столбце, а поскольку каждое число в клетке равно сумме единственной и неповторимой пары образующих, то сумма четырех обведенных кружками чисел равна сумме 8 генераторов, которая, как нетрудно подсчитать, равна 34. Следовательно, сумма четырех выбранных чисел также должна быть равна 34.
Поняв, как устроена магическая матрица 4x4, вы без труда построите магическую матрицу любого порядка. Рассмотрим, например, приводимую ниже матрицу 6-го порядка с 12 генераторами. Они выбраны так, что числа в клетках матрицы кажутся случайными. Это еще более маскирует закон, по которому выписаны числа матрицы и придает ей еще большую таинственность.
4 |
1 |
5 |
2 |
0 |
3 |
|
1 |
5 |
2 |
6 |
3 |
1 |
4 |
5 |
9 |
6 |
10 |
7 |
5 |
8 |
2 |
6 |
3 |
7 |
4 |
2 |
5 |
4 |
8 |
5 |
9 |
6 |
4 |
7 |
0 |
4 |
1 |
5 |
2 |
0 |
3 |
3 |
7 |
4 |
8 |
5 |
3 |
6 |
Сумма генераторов равна 30. Как бы ни выбирали в этой матрице 6 чисел, из которых никакие 2 не стоят в одной строке и в одном столбце, их сумма неизменно будет равна 30. Разумеется, эту сумму мы можем устанавливать по желанию.
Вы можете построить, например, магическую матрицу 10x10 с суммой генераторов, равной любому числу, которое покажется вам интересным, например "номер" текущего года или число лет, исполняющихся вашему доброму знакомому. Можно ли построить магические матрицы с отрицательными числами в некоторых клетках? Разумеется, можно. Генератором магической матрицы может быть любое число, положительное или отрицательное, рациональное или иррациональное.
А можно ли построить магическую матрицу, в которой не сумма, а произведение выбранных чисел было бы равно заданному числу? Разумеется, можно, и это открывает перед нами еще одно направление исследований. Основная схема остается прежней, но нужное число равно не сумме, а произведению генераторов. А что, если в клетки матрицы вписывать комплексные числа? И такое возможно, но мы предоставляем читателю разобраться в этом самостоятельно. Более подробные сведения о магических матрицах вы сможете почерпнуть в главе 2 ("Фокусы с матрицами") моей книги "Математические головоломки и развлечения" [Гарднер М. Математические головоломки и развлечения. М.: Мир, 1971, с.125-132.].
Необычное завещание
Этот парадокс представляет собой современный вариант старинной арабской головоломки, в котором вместо лошадей речь идет о машинах. Вы можете по своему усмотрению изменять завещание старого чудака, варьируя число машин в оставшейся после него коллекции и доли наследства, причитающиеся его сыновьям, следя лишь за тем, чтобы соблюдалось единственное условие: пополнив коллекцию еще одной машиной, сыновья получали возможность разделить наследство в соответствии с завещанием и вернуть "лишнюю" машину тому, кто любезно одолжил им ее.
Например, коллекция, оставшаяся после смерти адвоката, могла бы насчитывать 17 машин, а в завещании могло бы говориться о том, что сыновья должны получить соответственно 1/2, 1/3 и 1/9 всех машин. Если n - число машин в коллекции, а 1/a, 1/b и 1/c - доли, причитающиеся сыновьям по наследству, то парадокс возникает только в том случае, если уравнение
n/(n+1) = 1/a + 1/b + 1/c
допускает решение в положительных целых числах. Удастся ли вам обобщить задачу на случай большего числа наследников и машин, занимаемых для того, чтобы стал возможным раздел наследства в соответствии с завещанием?
Решение парадокса состоит в том, что сумма долей, указанных в завещании, меньше 1. Если бы сыновья во исполнение завещания вздумали бы резать машины, то после раздела наследства 11/12 машины остались бы "невостребованными". Миссис Зеро, по существу, показала братьям, как распределить между ними эти дополнительные 11/12 машины. В результате старший сын получает на 6/12, средний - на 3/12 и младший - на 2/12 машины больше, чем получили бы первоначально. В сумме эти три дроби (6/12 + 3/12 + 2/12) составляют 11/12, а поскольку каждый сын получает целое число машин, необходимость в разрезании машин отпадает.
Необыкновенный код
Если вы никогда не сталкивались с проблемами кодирования и декодирования, то вам, несомненно, будет интересно самостоятельно закодировать и декодировать несколько простых сообщений с помощью какого-нибудь числового кода, аналогичного предложенному доктором Зета. Коды позволяют нам прочувствовать всю важность взаимно-однозначного соответствия и отображения структуры на изоморфную структуру. Такие коды находят применение в высших разделах теории доказательств, Курт Гёдель доказал свою знаменитую теорему о том, что в каждой достаточно сложной (содержащей аксиомы арифметики целых чисел) дедуктивной системе существуют утверждения, которые в рамках этой системы невозможно ни доказать, ни опровергнуть. Доказательство Гёделя основано на использовании числового кода, позволяющего сопоставить каждой теореме дедуктивной системы единственное и очень большое целое число.
Разумеется, кодирование всей энциклопедии с помощью одной-единственной риски на стрежне хорошо лишь в теории, но отнюдь не на практике. Трудность состоит в том, что необходимая для такого кодирования точность недостижима. Ширина риски должна быть меньше размеров электрона, и длину обоих отрезков a и b необходимо измерять с такой же точностью. Но если предположить, что два отрезка можно измерить с точностью, достаточной для получения требуемой дроби, то метод доктора Зета следует признать вполне осуществимым.
Обратимся теперь к иррациональным числам. Математики считают, что десятичное разложение числа pi "бесструктурно", как любая другая бесконечная последовательность случайных цифр. Если это так, то можно утверждать, что какой бы конечный набор цифр мы ни взяли, в разложении pi найдется совпадающий с ним отрезок. Иначе говоря, где-то в разложении числа pi встречается отрезок, совпадающий с закодированной доктором Зета Британской энциклопедией. Более того, где-то в десятичном разложении числа л встречаются отрезки, совпадающие с закодированными текстами всех когда-либо напечатанных работ и даже всех сочинений, которые когда-нибудь будут созданы!
Любой конечный набор цифр встречается и в десятичных разложениях иррациональных чисел, в которых распределение цифр не случайно, а подчинено простым и ясным закономерностям. Например, любой конечный набор цифр заведомо встречается в десятичном разложении
0, 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
(после запятой выписаны подряд все целые числа).
Гостиница "Бесконечность"
Ни одно конечное множество невозможно поставить во взаимно-однозначное соответствие с любым из его собственных подмножеств. В случае бесконечных множеств такое утверждение неверно. Бесконечные множества нарушают старое правило "часть меньше целого". Бесконечное множество можно определить как множество, которое можно поставить во взаимно-однозначное соответствие с собственным подмножеством.
Управляющий гостиницей "Бесконечность" сначала показал, что множество всех натуральных чисел можно поставить во взаимно-однозначное соответствие с одним из его собственных подмножеств, вычеркивая из исходного множества один или пять элементов. Тот же прием позволяет устанавливать взаимнооднозначное соответствие между бесконечным множеством и его собственным подмножеством, получаемым при вычеркивании любого конечного числа элементов.
Вычеркиванию элементов можно придать несколько более драматический характер. Представим себе, что на столе перед нами лежат шкала к шкале две бесконечные линейки с равномерными сантиметровыми делениями. Нулевые отметки на обеих шкалах совмещены и находятся в центре стола. Деления с отметками простираются неограниченно далеко вправо, причем между отметками существует взаимно-однозначное соответствие: 0 - 0, 1 - 1, 2 - 2 и т.д. Сдвинем теперь одну из линеек на n см вправо, После этой операции деления сдвинутой линейки по-прежнему будут находиться во взаимно-однозначном соответствии с делениями неподвижной линейки: если линейка была сдвинута, например, на
Своим последним маневром управляющий гостиницей освободил бесконечное множество комнат. Это означает, что, вычитая из бесконечности бесконечность, можно получить снова бесконечность. Действительно, множество всех натуральных чисел можно поставить во взаимно-однозначное соответствие с множеством всех четных чисел. Если из всех натуральных чисел вычеркнуть четные, то останется бесконечное множество нечетных чисел.