УПП

Цитата момента



Четверть часика всегда больше чем четверть часа.
Ой, кажется — опаздываю!

Синтон - тренинг центрАссоциация профессионалов развития личности
Университет практической психологии

Книга момента



Единственная вещь, с помощью которой можно убить мечту, - компромисс.

Ричард Бах. «Карманный справочник Мессии»

Читать далее >>


Фото момента



http://old.nkozlov.ru/library/fotogalereya/france/
Париж

Скрытые закономерности в числе pi

щелкните, и изображение увеличится

Цифры в десятичном разложении числа pi кажутся расположенными в полном беспорядке, но что это? Начиная с 710100-го знака после запятой в разложении pi идут подряд 7 троек!

Цифры в десятичном разложении числа pi не случайны в том смысле, что они не порождены датчиком случайных чисел, но "случайны" в том смысле, что расположены беспорядочно. Математики неоднократно подвергали десятичное разложение числа pi всевозможным проверкам в надежде открыть какой-нибудь порядок в расположении цифр, но безуспешно. В этом смысле цифры в разложении числа pi следуют одна за другой в таком же беспорядке, как цифры, получаемые при запуске десятиугольного волчка, который останавливается на одной из цифр от 0 до 9.

Вероятность встретить серию из семи троек в любом наугад выбранном месте десятичного разложения числа pi очень мала: шансы не встретить ее составляют 9999995 против 1. То, что такая серия троек встречается среди первых 710106 знаков после запятой в десятичном разложении pi, на первый взгляд кажется удивительным. Но если мы займемся поиском в том же разложении серий из идущих подряд семерок, то окажется, что они встречаются с большей вероятностью, чем серии из троек. Не менее удивительно, что с ненулевой вероятностью в десятичном разложении числа pi можно встретить и такие серии, как 4444444, 8888888, 1212121, 1234567 или 7654321. Поскольку заранее не известно, какую именно закономерность мы ищем, какую-нибудь серию нам удастся найти с ненулевой вероятностью. Единственное, от чего зависит успех, - наша изобретательность в поиске скрытых закономерностей. Как некогда сказал Аристотель, невероятно то, что особенно вероятно.

Ясон и Солнце

щелкните, и изображение увеличится
Этот человек выписал первые буквы английских названий месяцев: J - вместо January (январь), F - вместо February и т.д. Можно ли считать случайным совпадением, что первые буквы названий месяцев с июля по ноябрь сложились в имя похитителя золотого руна Ясона? (JASON)?

щелкните, и изображение увеличится
Перед вами первые буквы английских названий планет Солнечной системы, выписанные в том порядке, в каком располагаются планеты, считая от Солнца: M - Меркурий, V - Венера и т.д. Можно ли считать еще одним случайным совпадением, что первые буквы названий планет от Сатурна до Нептуна сложились в слово SUN, что означает по-английски "Солнце"?

Эти два забавных совпадения как нельзя лучше подтверждают правильность высказывания Аристотеля. Доказать вероятность невероятного вы можете и с помощью волчка, позволяющего наугад выбирать буквы алфавита. Выбрав какое-нибудь трехбуквенное слово и поспорив с кем-нибудь на пари, что оно составится из трех идущих подряд букв, полученных в результате 100 последовательных запусков волчка, вы скорее всего проспорите. Но если вы поспорите на пари, что из 100 случайно выбранных букв три идущие подряд буквы образуют какое-нибудь слово, например дом, зуб, нос и т. д., то вы скорее всего выиграете.

Запуская волчок и записывая, на каких буквах он останавливается, вы сможете выяснить, долго ли ждать, пока не появится первое трехбуквенное слово. Попробуйте выяснить также, долго ли ждать появления четырех- или пятибуквенного слова. Поразительно, как часто в случайной последовательности букв возникают осмысленные слова!

Связывая получающиеся слова с текущими событиями, вы можете придать эксперименту ореол таинственности. Сочетание букв "Ева" напомнит о ком-то из знакомых, слово "Бах" - о недавнем концерте и т. д. В некоторых сочетаниях букв вы сможете распознать известные сокращения (ГУМ, ДЛТ, ТЮЗ), инициалы и т.д. Это поможет вам понять, как легко при желании усмотреть в этих сочетаниях букв проявление неких таинственных сил!

Эксперимент с буквами объясняет, почему в повседневной жизни так много замечательных совпадений. Всякий раз, когда случается совпадение и оно кажется сверхъестественным, то с точки зрения человека, сведущего в статистике, его отнюдь нельзя считать невероятным. Во множестве событий, происходящих за день, то или иное совпадение может произойти миллионами различных способов. Поскольку характер совпадения заранее не определен, оно не более удивительно и не менее вероятно, чем появление какой-то серии цифр в десятичном разложении числа pi или какого-то осмысленного слова в случайной последовательности букв. Когда совпадение происходит, оно кажется слишком невероятным для того, чтобы быть случайным. При этом мы забываем о том, что на одно совпадение приходятся миллиарды возможных совпадений, которые могли бы произойти, но так и не произошли.

Странные скопления

щелкните, и изображение увеличится

Совпадения случаются даже в колоде перетасованных карт. Например, почти всегда вы обнаружите скопление из шести-семи красных или черных карт.

щелкните, и изображение увеличится

Взглянув в телескоп, вы обнаружите скопление звезд. Горошины, брошенные на поверхность стола, рассыпаются не равномерно, а собираются в кучки. Старая поговорка гласит: "Беда не приходит одна".

Тенденция случайных событий "скапливаться" - явление хорошо известное, и его теории посвящены целые книги. Серия из семи троек в десятичном разложении числа pi - лишь один из примеров случайного скопления. Если вы будете бросать монету или вращать колесо рулетки, записывая каждый раз исход бросания или выпавший номер и цвет, то без труда обнаружите, что аналогичные примеры до< вольно длинных серий встречаются с удивительной частотой.

Поразительный эксперимент по изучению скоплений был предложен инженером из Мичиганского университета А.Д. Муром. Свой эксперимент Мур назвал "нонпарельной мозаикой" (небольшие конфетки в виде разноцветных шариков, с которыми Мур проводил свой опыт, называются нонпарелями). Засыпьте в бутыль из прозрачного стекла поровну круглых бусин красного и зеленого цвета. Встряхнув бутыль, перемешайте шарики. Если вы посмотрите на бутыль сбоку, то увидите не однородную смесь красных и зеленых бусин, как можно было бы ожидать, а красивую мозаику из довольно крупных скоплений красных бусин вперемежку с крупными скоплениями зеленых бусин. Скопления имеют неправильную форму. Образуемая скоплениями мозаика настолько неожиданна, что даже математики, когда впервые видят ее, считают, что одноцветные шарики слипаются вследствие какого-то электростатического эффекта. В действительности мозаику формирует случай. Узор из красных и зеленых пятен не более чем проявление случайного скапливания.

Если вам трудно в это поверить, попробуйте провести следующий простой эксперимент. На листе бумаги в клеточку начертите квадратную рамку размером 20 клеток на 20. Затем раскрасьте каждую клетку в красный или зеленый цвет, выбирая цвета в зависимости от исхода бросания монеты. Раскрасив все 400 клеток, вы увидите такую же мозаику из красных и зеленых скоплений, какая видна через стенки бутыли.

При образовании скоплений в игру нередко вступают нематематические факторы. Если за автомашинами, случайным образом распределенными на шоссе, вы будете наблюдать с вертолета, то увидите, что они распределяются вдоль шоссе неравномерно, образуя скопления. Реально наблюдаемое скопление сильнее случайного, поскольку водитель стремится не пропускать вперед машины, движущиеся примерно с той же скоростью, и прибавлять скорость на свободных участках дороги. "Пятнистость" в расположении городов на карте, дождливых дней в календаре, куртин клевера и других дикорастущих растений на лугу и т.д. обнаруживает более сильную тенденцию к скоплению, чем та, которая объясняется только игрой случая.

Поразительный карточный фокус

щелкните, и изображение увеличится

Перед вами удивительный парадокс, связанный с теорией скопления. Разложите колоду карт так, чтобы карты черных и красных мастей чередовались.

щелкните, и изображение увеличится

Разделите колоду на равные части, убедившись при этом, что нижние карты в каждой половине различных цветов.

щелкните, и изображение увеличится

Перетасуйте колоду. Для этого, отогнув вверх углы каждой из частей колоды, отпускайте по одной карте поочередно из каждой части так, чтобы карты ложились внахлест, после чего подровняйте все карты, не тасуя.

щелкните, и изображение увеличится

Снимая по две карты сверху, вы обнаружите в каждой паре по одной красной и по одной черной карте, словно не вы своими собственными руками делили колоду на две части и не тасовали их внахлест!

Этот замечательный карточный фокус - пример того, как скрытая математическая структура, вступая в игру, порождает скопления, кажущиеся загадочными и непонятными. Фокусники называют положенный в его основу трюк принципом Гилбрейта в честь первооткрывателя - математика и большого любителя фокусов Нормана Гилбрейта, придумавшего его в 1958г. С тех пор на основе принципа Гилбрейта фокусники-профессионалы изобрели не одну сотню хитроумнейших карточных фокусов.

Докажем по индукции, что принцип Гилбрейта действует безотказно. Итак, колода делится на две части. В одной части снизу оказывается черная карта, в другой - красная. После того как при тасовании внахлест на стол падает первая карта, в обеих частях колоды снизу оказываются карты одного цвета. Если первой на стол упала красная карта, то обе нижние карты черные. Если первой на стол упала черная карта, то обе нижние карты красные. Следовательно, независимо от того, какая из нижних карт упадет второй, поверх первой карты на столе непременно ляжет карта другого цвета. Итак, в первую пару карт на столе войдет одна красная и одна черная карта. После того как на стол сброшены две первые карты, мы возвращаемся к исходной ситуации: снизу в одной части окажется черная карта, в другой - красная. Какая бы из них ни упала на стол, снизу двух частей снова будут две карты одного цвета, поэтому и во вторую пару на столе непременно войдет одна красная и одна черная карта, после чего все опять повторится сначала.

Если вы захотите показать кому-нибудь этот фокус, то сначала вам необходимо подготовить колоду так, чтобы черные и красные карты чередовались. Попросите кого-нибудь из зрителей сдать на стол по одной карте примерно половину колоды (после того, как зритель положит на стол верхнюю карту, нижние карты в обеих частях колоды заведомо будут различного цвета), а затем, взяв одну часть колоды в правую, а другую в левую руку, сбросить карты по одной на стол так, чтобы они легли внахлест. Держа "перетасованную" колоду под столом так, чтобы ее не видели ни зрители, ни вы сами, объявите зрителям, будто вы можете на ощупь определять цвет карт, и "в доказательство" начните выкладывать на стол карты парами - по одной красной и одной черной. Для этого вам необходимо лишь каждый раз брать по две карты сверху.

Можно ли обобщить принцип Гилбрейта и положить более широкий вариант в основу новых карточных фокусов? Попробуем проделать следующую процедуру. Подготовим колоду так, чтобы карты шли четверками - по одной карте каждой масти, например в последовательности ПЧБТ, ПЧБТ, ПЧБТ и т. д. (П - пики, Ч - червы, Б - бубны, Т - трефы). Снимая по одной карте сверху, сдайте примерно половину колоды (точное число сданных карт не имеет значения). При сдаче последовательность мастей автоматически изменяется на обратную. Взяв в правую руку одну часть колоды (например, сданные карты), а в левую - другую часть колоды, сбросьте карты по одной из каждой части на стол так, чтобы они легли внахлест. После этого начните снимать карты с верха перетасованной колоды четверками. В каждой четверке непременно будет по одной карте каждой масти.

А вот еще один не менее эффективный фокус. Разложите карты четырьмя сериями по 13 карт в каждой. Карты в серии независимо от масти расположите в следующем порядке: туз, двойка, тройка, четверка, пятерка, шестерка, семерка, восьмерка, девятка, десятка, валет, дама, король. Проделайте с колодой ту же процедуру, что и в предыдущем фокусе. Отсчитайте сверху четыре серии по 13 карт. В каждой серии непременно будет по одной карте всех значений от туза до короля!

В заключение приведем еще одно обобщение принципа Гилбрейта. Возьмите две колоды и расположите в них карты в одной и той же последовательности. Положите одну колоду на другую и сдайте сверху столько карт, чтобы осталось около 52 листов. Перетасуйте обе части удвоенной колоды внахлест и разделите 104 карты на две строго равные части. Каждая половина окажется полной колодой!

Парадокс с выборами

щелкните, и изображение увеличится

Предположим, что три кандидата - Абель, Берне и Кларк (A, B и C) - выставили свои кандидатуры на президентских выборах.

щелкните, и изображение увеличится

Как показали итоги выборов, 2/3 избирателей отдали предпочтение Абелю перед Бернсом и 2/3 избирателей отдали предпочтение Бернсу перед Кларком. Означает ли это, что большинство избирателей отдало предпочтение Абелю перед Кларком?

щелкните, и изображение увеличится

Не обязательно. Если голоса избирателей разделились так, как показано на рисунке слева, то возникла парадоксальная ситуация. Предоставляем объяснить ее самим кандидатам.

щелкните, и изображение увеличится

М-р Абель. Две трети избирателей предпочли меня Бернсу.

щелкните, и изображение увеличится

М-р Бернс. Две трети избирателей предпочли меня Кларку.

щелкните, и изображение увеличится

М-р Кларк. Две трети избирателей предпочли меня Абелю!

Этот парадокс, известный еще в XVIIIв., представляет собой пример нетранзитивных отношений, которые могут возникнуть при попарном выборе. Понятие транзитивности применимо к таким отношениям, как "выше, чем" ("x выше, чем y"), "больше, чем", "меньше, чем", "раньше, чем", "тяжелее, чем". Вообще, отношение R называется транзитивным, если из того, что истинны утверждения xRy и yRz, следует, что истинно утверждение xRz.

Парадокс с выбором кажется столь неожиданным потому, что мы ошибочно полагаем, будто отношение "быть предпочтительнее, чем" всегда транзитивно. Если кто-то отдает предпочтение A перед B (то есть для него A предпочтительнее, чем B), а B перед C, то естественно ожидать, что этот кто-то отдает предпочтение A перед C. Но как показывает парадокс, это верно далеко не во всех случаях. Большинства избирателей отдало предпочтение кандидату A перед кандидатом B, большинство избирателей отдало предпочтение кандидату B перед кандидатом C, и большинство избирателей отдало предпочтение кандидату C перед кандидатом A. Ситуация заведомо не транзитивная! Этот парадокс иногда называют парадоксом Эрроу в честь лауреата Нобелевской премии экономиста Эрроу, показавшего с помощью такого рода логических парадоксов принципиальную невозможность абсолютно демократической избирательной системы.

Парадокс может возникать также в любой ситуации, в которой требуется произвести выбор одной из трех альтернатив, попарно упорядоченных по трем свойствам. Предположим, что A, B и C - три претендента на руку и сердце одной и той же невесты. Пусть строки некой матрицы 3x3 содержат оценки, даваемые невестой каким-нибудь трем качествам кандидатов в женихи, например их уму, внешности и обеспеченности. Сравнивая оценки попарно, невеста может оказаться в довольно затруднительном положении, если выяснится (а такое легко может слу читься), что кандидату A она отдает предпочтение перед B, B - перед C и C - перед A!

Последуем математику Полу Халмошу и будем считать, что А означает пирожки с абрикосовым вареньем, В - с вишневым и С - со сливовым*. Предположим, что в буфете в продаже всегда есть пирожки с вареньем только двух сортов. Матрица показывает, как посетитель оценивает пирожки по вкусу, свежести и размерам. По вполне разумным мотивам посетитель может предпочесть пирожки с абрикосовым вареньем пирожкам с вишневым вареньем, пирожки с вишневым вареньем - пирожкам со сливовым вареньем и пирожки со сливовым вареньем - пирожкам с абрикосовым вареньем.

Более подробно парадоксы с нетранзитивными отношениями рассмотрены в моей статье (Scientific American, октябрь 1974), а также в статье "Выбор избирательной системы" Рихарда Ниемы и Уильяма Райкера (там же, июнь 1976) и Линн Стин об избирательных системах (там же, октябрь 1980).

Мисс Лоунлихартс

щелкните, и изображение увеличится
Мисс Лоунлихартс по профессии статистик, ей надоело коротать вечера в одиночестве.

Мисс Лоунлихартс. Хорошо бы познакомиться с одиноким интеллигентным мужчиной. Говорят сейчас есть какие-то клубы встреч. Вступлю-ка я в один из них.

щелкните, и изображение увеличится
Мисс Лоунлихартс записалась сразу в два таких клуба. Однажды оба клуба проводили вечер в великолепном дворце "Парадокс". Члены одного клуба встречались в Восточной комнате, члены другого - в Западной.

щелкните, и изображение увеличится
Мисс Лоунлихартс. Одним мужчинам нравится носить усы, другие предпочитают бриться. Одни остроумные, приятные собеседники, другие - страшные зануды и сухари. Я бы предпочла сегодня провести вечер с приятным собеседником. Следует ли мне остановить свой выбор на мужчине с усами?

щелкните, и изображение увеличится
Мисс Лоунлихартс провела статистическое исследование тех мужчин, которые должны были собраться в Восточной комнате. Оказалось, что среди приятных собеседников 5/11, или 35/77, составляют усатые, а 3/7, или 33/77, - гладко выбритые.

щелкните, и изображение увеличится

Мисс Лоунлихартс. Решено: в Восточной комнате я все внимание уделяю усатым.

щелкните, и изображение увеличится
Как показано аналогичное статистическое исследование, среди приятных собеседников, которые должны были собраться в Западной комнате, усатые составляли большинство - 84/126, приходившихся на долю гладко выбритых.

щелкните, и изображение увеличится

Мисс Лоунлихартс. Как все просто! И в Восточной, и в Западной комнате у меня больше шансов встретить приятного собеседника среди усатых мужчин.

щелкните, и изображение увеличится

К тому времени, когда мисс Лоунлихартс добралась до дворца "Парадокс", оба клуба встреч решили объединиться, и все перешли в Северную комнату.

щелкните, и изображение увеличится
Мисс Лоунлихартс. Как быть? Если в каждом клубе у меня больше шансов встретить интересного собеседника среди усатых мужчин, то и в объединенной группе он скорее всего окажется с усами. Впрочем, расчеты превыше всего. Подсчитаю-ка я шансы,

щелкните, и изображение увеличится

Результаты вычислений удивили мисс Лоунлихартс. Шансы встретить интересного собеседника среди усатых мужчин на объединенной встрече оказались ниже, чем среди гладко выбритых!

щелкните, и изображение увеличится

Мисс Лоунлихартс. Мне пришлось изменить тактику, но зато я была вознаграждена, хотя, признаться, до сих пор не пойму, почему так произошло.

Этот любопытный парадокс можно продемонстрировать на карточной модели. Пусть красные карты соответствуют приятным собеседникам, черные - унылым сухарям, крест, поставленный карандашом на рубашке карты, - усам, а отсутствие креста - гладко выбритому лицу.

Пометим крестами 5 красных и 6 черных карт. Добавим к ним 3 красные и 4 черные карты без крестов на рубашках. Всего у нас наберется 18 карт. Это мужчины, собравшиеся в Восточной комнате.

Перетасуйте 18 карт и разложите их на столе вверх рубашкой. Какую карту вам следует выбрать - с крестом или без креста на рубашке, если вы хотите с наибольшей вероятностью вытянуть красную карту? Нетрудно подсчитать, как это сделано на рисунках, что вероятность вытащить красную карту максимальна, если вы выберете карту, помеченную крестом.

Аналогичным образом постройте модель компании, собравшейся в Западной комнате. Пометьте крестами рубашки 6 красных и 3 черных карты. Добавьте к ним 9 красных и 5 черных карт, не помеченных крестом. Всего у вас наберется 23 карты. Перетасуйте их и разложите вверх рубашкой. Нетрудно доказать, что и в этом случае ваши шансы вытянуть красную карту максимальны, если вы выберете карту, помеченную крестом.

Объедините теперь обе группы карт в одну колоду из 41 карты. Перетасуйте ее и разложите карты вверх рубашкой. Трудно поверить, но, проделав все вычисления, вы обнаружите, что наибольший шанс вытащить красную карту будет у вас в том случае, если вы выберете карту, не помеченную крестом!

С подобными парадоксами статистики сталкиваются. например, при анализе действия лекарств. Обратимся снова к той же карточной модели. На этот раз карты будут изображать две группы пациентов, на которых испытывалось действие лекарственного препарата. Карты, помеченные крестом, пусть означают пациентов, получивших лекарство, карты, не помеченные крестом, - пациентов, получивших "плацебо", или "пустышку", - вещество, не оказывающее никакого действия на организм, красные карты - пациентов, состояние которых улучшилось от приема лекарства, черные - пациентов, состояние которых не улучшилось от приема лекарства. При анализе действия лекарства на каждую группу пациентов в отдельности мы пришли бы к заключению, что лекарство более благоприятно сказывается на состоянии пациента, чем "плацебо". При анализе действия того же лекарства на объединенную группу вывод был бы прямо противоположным: прием "плацебо" оказывает более благоприятное действие на состояние пациента, чем лекарство! Этот парадокс показывает, как трудно придумать схему испытаний, которая давала бы надежные статистические результаты.

Примером того же парадокса может служить подлинное происшествие, приключившееся в 1978г. при анализе статистических данных о результатах приема в Калифорнийский университет в Беркли. Исследователей интересовало, не отдается ли при вступительных экзаменах предпочтение юношам перед девушками. В тот год в университет было зачислено около 44% абитуриентов и около 33% абитуриенток. Поскольку юноши и девушки были подготовлены примерно одинаково, казалось, что приемная комиссия не отличалась беспристрастием и отдавала явное предпочтение юношам. Но при попытке установить, на каком из факультетов девушки подвергались дискриминации, выяснилось, что на каждом из факультетов университета процент принятых абитуриенток был выше, чем процент принятых абитуриентов! Как это объяснить? Парадокс возник из-за того, что гораздо больший процент абитуриенток подали заявление на более трудные факультеты, где отсев был значительно больше. Если же сравнить абитуриентов и абитуриенток, поступавших на один и тот же факультет, то доля абитуриенток, успешно сдавших вступительные экзамены и зачисленных в университет, оказывалась выше доли абитуриентов. "Дискриминация" юношей превратилась в "дискриминацию" девушек, когда все данные по факультетам свели в единые данные по всему университету. Был ли Калифорнийский университет реабилитирован после того, как парадокс разрешился? По-видимому, был. А что, если какой-то женоненавистник придумал более трудные вопросы и задачи на вступительных экзаменах именно на те факультеты, на которые особенно охотно подавали заявления абитуриентки?



Страница сформирована за 0.86 сек
SQL запросов: 197