УПП

Цитата момента



Когда все плохое проходит, остается только хорошее.
Главное — его разглядеть

Синтон - тренинг центрАссоциация профессионалов развития личности
Университет практической психологии

Книга момента



Единственная вещь, с помощью которой можно убить мечту, - компромисс.

Ричард Бах. «Карманный справочник Мессии»

Читать далее >>


Фото момента



http://old.nkozlov.ru/library/fotogalereya/d542/
Сахалин и Камчатка

Глава пятая. ОТНОСИТЕЛЬНОСТЬ

Тот факт, что свет распространяется с конечной, хотя и очень высокой, скоростью, был обнаружен в 1676 г . датским астрономом Оле Христиансеном Рёмером. Наблюдая за спутниками Юпитера, можно заметить, что время от времени они исчезают из виду, проходя позади гигантской планеты. Такие затмения в системе спутников Юпитера должны происходить с одинаковыми интервалами, однако Рёмер установил, что промежутки между ними различны. Может быть, скорость движения спутников по орбите то уменьшается, то увеличивается? Рёмер нашел другое объяснение.

Если бы свет распространялся с бесконечной скоростью, то на Земле эти затмения наблюдались бы через равные интервалы времени, в те самые моменты, когда они происходят, — подобно тиканью космических часов. Приближение Юпитера к Земле или его удаление не имело бы никакого значения, так как свет любое расстояние преодолевал бы моментально.

Теперь представим, что свет распространяется с конечной скоростью. Тогда затмения должны наблюдаться спустя некоторое время после их наступления. Эта задержка зависит от скорости света и от расстояния до Юпитера. Если бы расстояние между Юпитером и Землей оставалось неизменным, то и затмения отмечались бы всегда через равные интервалы. Однако, когда расстояние между Землей и Юпитером сокращается, «сигнал» о каждом следующем затмении преодолевает все меньшее и меньшее расстояние и достигает нашей планеты со все большим «опережением графика». По той же причине, когда Юпитер удаляется от Земли, мы видим, что затмения все больше запаздывают (рис. 6). Величина опережения и запаздывания зависит от скорости света, что позволяет ее измерить.

Рис. 6. Скорость света и моменты затмений спутников Юпитера.

Наблюдаемые моменты затмений спутников Юпитера зависят как от действительного времени затмений, так и от времени, в течение которого свет преодолевает расстояние от Юпитера до Земли. Так, создается впечатление, будто затмения случаются чаще, когда Юпитер сближается с Землей, и реже — когда удаляется от нее. Этот эффект здесь преувеличен для наглядности.

щелкните, и изображение увеличится

Именно это и сделал Рёмер. Он заметил, что во время сближения Земли и Юпитера затмения наступают раньше, а во время их удаления друг от друга — позже, и использовал эту разницу для вычисления скорости света. Однако его оценки изменения расстояния от Земли до Юпитера были не очень точными, из-за чего он получил величину скорости света 225 тысяч километров в секунду, отличную от современной — 300 тысяч километров в секунду. И все же достижение Рёмера достойно восхищения. Ведь он не только установил, что скорость света конечна, и вычислил ее величину, но и сделал это за одиннадцать лет до публикации «Начал» Ньютона.

Удовлетворительной теории распространения света не существовало до 1865 г ., когда английский физик Максвелл сумел объединить до того обособленные описания электрических и магнитных сил. Уравнения Максвелла предсказывали возможность волнообразных возмущений сущности, которую он назвал электромагнитным полем. Они должны были распространяться с постоянной скоростью, подобно ряби на поверхности пруда. Вычислив эту скорость, Максвелл обнаружил, что она точно совпадает со скоростью света!

Сегодня мы знаем, что волны Максвелла воспринимаются человеческим глазом как видимый свет, если их длина находится в интервале от сорока до восьмидесяти миллионных долей сантиметра. [Длиной волны называют расстояние между двумя ее гребнями или впадинами (рис. 7).] Волны, длина которых короче, чем у видимого света, теперь называют ультрафиолетовым, рентгеновским и гамма-излучением. Волны, превосходящие по длине видимый свет, — это радиоволны (метр или больше), микроволны (несколько сантиметров) и инфракрасное излучение (больше десятитысячной доли сантиметра).

Рис. 7. Длина волны.

Длиной волны называют расстояние между двумя ее гребнями или впадинами.

щелкните, и изображение увеличится

Вытекающее из теории Максвелла положение о том, что радио— и световые волны распространяются с некоторой постоянной скоростью, было трудно согласовать с теорией Ньютона. В отсутствие абсолютного стандарта покоя не может быть и никакого универсального соглашения о скорости объекта. Чтобы понять это, снова представьте себя играющим в пинг-понг в поезде. Если вы направляете шарик к противнику со скоростью 10 миль в час , то для наблюдателя на платформе скорость шарика составит 100 миль в час: 10 — скорость шарика относительно поезда плюс 90 — скорость поезда относительно платформы. Какова скорость шарика — 10 или 100 миль в час? А как вы будете ее определять? Относительно поезда? Относительно Земли? Без абсолютного стандарта покоя вы не можете определить абсолютную скорость шарика. Одному и тому же шарику можно приписать любую скорость в зависимости от того, относительно какой системы отсчета она измеряется (рис. 8). Согласно теории Ньютона то же самое должно относиться и к свету. Так какой же тогда смысл несет в себе утверждение теории Максвелла о том, что световые волны всегда распространяются с одинаковой скоростью?

Чтобы примирить теорию Максвелла с законами Ньютона, была принята гипотеза о том, что повсюду, даже в вакууме, в «пустом» пространстве, существует некая среда, получившая название «эфир». Идея эфира имела особую привлекательность для тех ученых, которые считали, что, подобно морским волнам, требующим воды, или звуковым колебаниям, требующим воздуха, волнам электромагнитной энергии нужна некая среда, в которой они могли бы распространяться. С этой точки зрения световые волны распространяются в эфире так же, как звуковые волны в воздухе, и их скорость, выводимая из уравнений Максвелла, должна измеряться относительно эфира. В таком случае разные наблюдатели фиксировали бы разные значения скорости света, но относительно эфира она оставалась бы постоянной.

Эту идею можно проверить. Представьте себе свет, испускаемый неким источником. Согласно теории эфира свет распространяется в эфире с постоянной скоростью. Если вы движетесь сквозь эфир в сторону источника, скорость, с которой к вам приближается свет, будет складываться из скорости движения света в эфире и вашей скорости относительно эфира. Свет будет приближаться к вам быстрее, чем если бы вы были неподвижны или, например, двигались в каком-то другом направлении. Однако это различие в скорости очень трудно измерить из-за того, что скорость света многократно больше той скорости, с которой вы могли бы двигаться навстречу источнику.

В 1887 г. Альберт Майкельсон (который впоследствии стал первым американским лауреатом Нобелевской премии по физике) и Эдвард Морли выполнили очень тонкий и трудный эксперимент в Школе прикладных наук в Кливленде. Они решили воспользоваться тем, что раз Земля обращается вокруг Солнца со скоростью около 30 километров в секунду, то и их лаборатория должна двигаться сквозь эфир с этой относительно высокой скоростью. Конечно, никто не знал, перемещается ли эфир относительно Солнца, а если да, то в каком направлении и с какой скоростью. Но, повторяя измерения в разное время года, когда Земля находится в различных точках своей орбиты, они надеялись учесть этот неизвестный фактор. Майкельсон и Морли разработали эксперимент, в котором скорость света в направлении движения Земли через эфир (когда мы движемся в сторону источника света) сравнивалась со скоростью света под прямым углом к этому направлению (когда мы не приближаемся к источнику). К несказанному их удивлению, они обнаружили, что скорость в обоих направлениях в точности одинакова!

Рис. 8. Различные скорости теннисного шарика.

Согласно теории относительности различающиеся результаты измерений скорости тела, полученные разными наблюдателями, одинаково справедливы.

щелкните, и изображение увеличится

Между 1887 и 1905 гг. было предпринято несколько попыток спасти теорию эфира. Наиболее интересными оказались работы голландского физика Хендрика Лоренца, который попробовал объяснить результат эксперимента Майкельсона-Морли сжатием предметов и замедлением хода часов при передвижении сквозь эфир. Однако в 1905 г . доселе неизвестный сотрудник швейцарского патентного бюро Альберт Эйнштейн показал, что всякая надобность в эфире отпадает, если отказаться от идеи абсолютного времени (вы скоро узнаете почему). Ведущий французский математик Анри Пуанкаре высказал похожие соображения несколькими неделями позже. Аргументы Эйнштейна были ближе к физике, чем выкладки Пуанкаре, который рассматривал проблему как чисто математическую и до последнего своего дня не принимал эйнштейновскую интерпретацию теории.

Фундаментальный постулат Эйнштейна, именуемый принципом относительности, гласит, что все законы физики должны быть одинаковыми для всех свободно движущихся наблюдателей независимо от их скорости. Это было верно для законов движения Ньютона, но теперь Эйнштейн распространил эту идею также и на теорию Максвелла. Другими словами, раз теория Максвелла объявляет скорость света постоянной, то любой свободно движущийся наблюдатель должен фиксировать одно и то же значение независимо от скорости, с которой он приближается к источнику света или удаляется от него. Конечно, эта простая идея объяснила — без привлечения эфира или иной привилегированной системы отсчета — смысл появления скорости света в уравнениях Максвелла, однако из нее также вытекал ряд удивительных следствий, которые зачастую противоречили интуиции.

Например, требование, чтобы все наблюдатели сошлись в оценке скорости света, вынуждает изменить концепцию времени. Согласно теории относительности наблюдатель, едущий на поезде, и тот, что стоит на платформе, разойдутся в оценке расстояния, пройденного светом. А поскольку скорость есть расстояние, деленное на время, единственный способ для наблюдателей прийти к согласию относительно скорости света — это разойтись также и в оценке времени. Другими словами, теория относительности положила конец идее абсолютного времени! Оказалось, что каждый наблюдатель должен иметь свою собственную меру времени и что идентичные часы у разных наблюдателей не обязательно будут показывать одно и то же время.

Теория относительности не нуждается в эфире, присутствие которого, как показал эксперимент Майкельсона-Морли, невозможно обнаружить. Вместо этого теория относительности заставляет нас существенно изменить представления о пространстве и времени. Мы должны признать, что время не полностью отделено от пространства, но составляет с ним некую общность — пространство-время. Понять это нелегко. Даже сообществу физиков понадобились годы, чтобы принять теорию относительности. Она — свидетельство богатого воображения Эйнштейна, его способности к построению теорий, его доверия к собственной логике, благодаря которому он делал выводы, не пугаясь тех, казалось бы, странных заключений, которые порождала теория.

Всем хорошо известно, что положение точки в пространстве можно описать тремя числами, или координатами. Например, можно сказать, что некая точка в комнате находится в семи футах от одной стены, в трех футах от другой и на высоте пяти футов над полом. Или мы можем указать точку, задав ее географические широту и долготу, а также высоту над уровнем моря (рис. 9).

Рис. 9. Координаты в пространстве.

Говоря, что пространство имеет три измерения, мы подразумеваем, что положение точки в нем можно передать с помощью трех чисел — координат. Если мы введем в наше описание время, то получим четырехмерное пространство-время.

щелкните, и изображение увеличится

Можно использовать любые три подходящие координаты, однако каждая система координат имеет ограниченную область применения. Не слишком-то удобно определять положение Луны относительно центра Лондона — столько-то миль на север и столько-то к западу от площади Пиккадилли и на столько-то футов выше уровня моря. Вместо этого можно задать положение Луны, указав ее расстояние от Солнца, удаление от плоскости планетных орбит, а также угол между прямой Луна-Солнце и линией, соединяющей Солнце с ближайшей к нам звездой, Проксимой Центавра. Но даже эти координаты не особенно удобны для указания местоположения Солнца в нашей Галактике или самой Галактики в Местной группе галактик. На самом деле Вселенную можно описывать в терминах своего рода перекрывающихся «заплат». В пределах каждой заплаты для задания положения точки правомерно использовать свою систему координат.

В пространстве-времени теории относительности любое событие — то есть нечто случающееся в определенной точке пространства в определенное время — можно задать четырьмя координатами. Выбор координат опять-таки произволен: можно использовать любые три четко заданные пространственные координаты и любой способ измерения времени. Но в теории относительности нет принципиального различия между пространственными и временными координатами, как нет его между любыми двумя пространственными координатами. Можно выбрать новую систему координат, в которой, скажем, первая пространственная координата будет неким сочетанием прежних первой и второй пространственных координат. Например, положение точки на Земле можно было бы выразить не расстоянием в милях к северу и к западу от площади Пиккадилли, а, скажем, расстоянием к северо-востоку и к северо-западу. Аналогично можно использовать новую временную координату, задав ее как старое время (в секундах) плюс расстояние (в световых секундах) к северу от площади Пиккадилли.

Другое известное следствие теории относительности — эквивалентность массы и энергии, выраженная знаменитым уравнением Эйнштейна Е = тс 2 (где Е— энергия, т — масса тела, с — скорость света). Ввиду эквивалентности энергии и массы кинетическая энергия, которой материальный объект обладает в силу своего движения, увеличивает его массу. Иными словами, объект становится труднее разгонять.

Этот эффект существенен только для тел, которые перемещаются со скоростью, близкой к скорости света. Например, при скорости, равной 10% от скорости света, масса тела будет всего на 0,5% больше, чем в состоянии покоя, а вот при скорости, составляющей 90% от скорости света, масса уже более чем вдвое превысит нормальную. По мере приближения к скорости света масса тела увеличивается все быстрее, так что для его ускорения требуется все больше энергии. Согласно теории относительности объект никогда не сможет достичь скорости света, поскольку в данном случае его масса стала бы бесконечной, а в силу эквивалентности массы и энергии для этого потребовалась бы бесконечная энергия. Вот почему теория относительности навсегда обрекает любое обычное тело двигаться со скоростью, меньшей скорости света. Только свет или другие волны, не имеющие собственной массы, способны двигаться со скоростью света.

Теория относительности, выдвинутая Эйнштейном в 1905 г., называется «специальной» или «частной». Она очень успешно объяснила неизменность скорости света для всех наблюдателей и описала явления при движении со скоростями, близкими к скорости света, но оказалась несовместима с теорией тяготения Ньютона.

Теория Ньютона гласит, что в любой момент тела притягивают друг друга с силой, которая зависит от расстояния между ними в это время. Следовательно, если кто-то переместит одно из тел, сила притяжения изменится мгновенно.

Если бы, скажем, Солнце внезапно исчезло, то согласно теории Максвелла Земля не погружалась бы во мрак еще 8 минут (именно столько требуется солнечному свету, чтобы достичь нас). Однако по теории Ньютона Земля, освободившись от притяжения Солнца, сошла бы с орбиты немедленно. Таким образом, гравитационный эффект исчезновения Солнца достиг бы нас с бесконечной скоростью, а не со скоростью света или медленнее, как предусматривает специальная теория относительности.

Между 1908 и 1914 гг. Эйнштейн предпринял множество неудачных попыток примирить теорию тяготения со специальной теорией относительности. Наконец, в 1915 г ., он предложил еще более революционную доктрину, известную теперь как общая теория относительности.

Глава шестая. ИСКРИВЛЕННОЕ ПРОСТРАНСТВО

Общая теория относительности Эйнштейна основана на революционном предположении, что гравитация не обычная сила, а следствие того, что пространство-время не является плоским, как принято было думать раньше. В общей теории относительности пространство-время изогнуто или искривлено помещенными в него массой и энергией. Тела, подобные Земле, движутся по искривленным орбитам не под действием силы, именуемой гравитацией; они следуют по искривленным орбитам потому, что те являются геодезическими линиями — ближайшими аналогами прямых линий в искривленном пространстве. Более строго геодезическая линия определяется как кратчайший (или, наоборот, самый длинный) путь между двумя точками.

Геометрическая плоскость — пример двумерного пространства, в котором геодезические линии являются прямыми. Поверхность Земли — это двумерное искривленное пространство. Геодезические линии на Земле называются большими кругами. Экватор — большой круг, как и любой другой круг на поверхности, центр которого совпадает с центром Земли. (Термин «большой круг» указывает на то, что такие круги являются наибольшими возможными на поверхности Земле.) Так как геодезическая линия — кратчайшая линия между двумя аэропортами, штурманы ведут самолеты именно по таким маршрутам. Например, вы могли бы, следуя показаниям компаса, пролететь 5966 километров от Нью-Йорка до Мадрида почти строго на восток вдоль географической параллели. Но вам придется покрыть всего 5802 километра , если вы полетите по большому кругу, сперва на северо-восток, а затем постепенно поворачивая к востоку и далее к юго-востоку (рис. 10). Вид этих двух маршрутов на карте, где земная поверхность искажена (представлена плоской), обманчив. Двигаясь «прямо» на восток от одной точки к другой по поверхности земного шара, вы в действительности перемещаетесь не по прямой линии, точнее сказать, не по самой короткой, геодезической линии.

Рис. 10. Расстояния на земном шаре.

Кратчайшая линия между двумя точками на земном шаре проходит по большому кругу, который на плоской карте не передается прямой линией.

щелкните, и изображение увеличится

В общей теории относительности тела всегда следуют по геодезическим линиям в четырехмерном пространстве-времени. В отсутствие материи эти прямые линии в четырехмерном пространстве-времени соответствуют прямым линиям в трехмерном пространстве. В присутствии материи четырехмерное пространство-время искажается, вызывая искривление траекторий тел в трехмерном пространстве (подобно тому, как в старой ньютоновской теории это происходило под действием гравитационного притяжения).

Нечто похожее наблюдается, когда самолет летит над холмистой местностью. Он, может быть, и двигается по прямой линии в трехмерном пространстве, но удалите третье измерение — высоту, — и окажется, что его тень следует по изогнутой траектории на холмистой двумерной поверхности Земли.

Или вообразите космический корабль, пролетающий в космосе по прямой линии над Северным полюсом. Спроецируйте его траекторию вниз на двумерную поверхность Земли, и вы увидите, что она описывает полукруг, пересекающий параллели Северного полушария (рис. 11). Хотя это трудно изобразить, масса Солнца искривляет пространство-время таким образом, что Земля, следуя по кратчайшему пути в четырехмерном пространстве-времени, представляется нам движущейся по почти круговой орбите в трехмерном пространстве.

Рис. 11. Траектория тени космического корабля.

Если траекторию космического корабля, который движется в космосе по прямой линии, спроецировать на двумерную поверхность Земли, окажется, что она искривлена.

щелкните, и изображение увеличится

В действительности, несмотря на иной способ вывода, орбиты планет, предсказываемые общей теорией относительности, почти в точности такие же, как те, что предсказывает закон тяготения Ньютона. Самое большое расхождение обнаруживается у орбиты Меркурия, который, будучи ближайшей к Солнцу планетой, испытывает самое сильное воздействие гравитации и имеет довольно вытянутую эллиптическую орбиту. Согласно обшей теории относительности большая ось эллиптической орбиты Меркурия должна поворачиваться вокруг Солнца приблизительно на один градус за десять тысяч лет (рис. 12).

Рис. 12. Прецессия орбиты Меркурия.

При обращении Меркурия вокруг Солнца большая ось его эллиптической орбиты поворачивается, описывая полный круг приблизительно за 360 000 лет.

щелкните, и изображение увеличится

Как ни мал этот эффект, он был зафиксирован (см. гл. 3) намного раньше 1915 г . и послужил одним из первых подтверждений теории Эйнштейна. В последние годы еще менее заметные отклонения орбит других планет от предсказаний теории Ньютона были обнаружены при помощи радаров в полном согласии с общей теорией относительности.

Световые лучи тоже должны следовать по геодезическим линиям пространства-времени. И снова тот факт, что пространство искривлено, означает, что траектория света в пространстве больше не выглядит как прямая линия. Согласно общей теории относительности гравитационные поля должны искривлять свет. Например, теория предсказывает, что вблизи Солнца лучи света должны слегка изгибаться в его сторону под воздействием массы светила. Значит, свет далекой звезды, случись ему пройти рядом с Солнцем, отклонится на небольшой угол, из-за чего наблюдатель на Земле увидит звезду не совсем там, где она в действительности располагается (рис. 13). Конечно, если бы свет звезды всегда проходил близко к Солнцу, мы не смогли бы установить, отклоняется луч света, или звезда действительно находится там, где мы, как нам кажется, ее видим. Однако при движении Земли по орбите позади Солнца оказываются различные звезды. Их свет отклоняется, и, как следствие, меняется их видимое положение относительно других звезд.

Рис. 13. Искривление лучей света вблизи Солнца.

Когда Солнце находится почти на полпути между Землей и далекой звездой, его гравитационное поле отклоняет лучи, испускаемые звездой, меняя ее видимое положение.

щелкните, и изображение увеличится

В обычных условиях наблюдать этот эффект очень трудно, поскольку свет Солнца затмевает звезды, расположенные вблизи него на небе. Однако такие наблюдения можно выполнить во время солнечных затмений, когда Луна преграждает путь солнечным лучам. Гипотезу Эйнштейна об отклонении света нельзя было проверить в 1915 г . — шла Первая мировая война. Только в 1919 г . британская экспедиция, наблюдавшая затмение Солнца в Западной Африке, подтвердила, что свет действительно отклоняется Солнцем, как и предсказывал Эйнштейн. Этот вклад британской науки в доказательство немецкой теории был воспринят тогда как символ примирения между двумя странами после войны. По иронии судьбы, более поздняя проверка фотографий, сделанных экспедицией, показала, что погрешности измерений не уступали по величине измеряемому эффекту. Совпадение результатов измерений с теоретическими выкладками было счастливой случайностью, а возможно, исследователи заранее знали, какой результат хотят получить, — нередкий казус в науке. Отклонение света, однако, удалось с высокой точностью подтвердить множеством более поздних наблюдений.

Еще одно предсказание общей теории относительности состоит в том, что около массивных тел, таких как Земля, должен замедляться ход времени. Эйнштейн пришел к этому выводу еще в 1907 г ., за пять лет до того, как понял, что гравитация изменяет форму пространства, и за восемь лет до построения завершенной теории. Он вычислил величину этого эффекта, исходя из принципа эквивалентности, роль которого в общей теории относительности сходна с ролью принципа относительности в специальной теории.

Напомним, что согласно основному постулату специальной теории относительности все физические законы одинаковы для всех свободно двигающихся наблюдателей, независимо от их скорости. Грубо говоря, принцип эквивалентности распространяет это правило и на тех наблюдателей, которые движутся не свободно, а под действием гравитационного поля. Точная формулировка этого принципа содержит ряд технических оговорок; например, если гравитационное поле неоднородно, то применять принцип следует по отдельности к рядам небольших перекрывающихся однородных полей‑заплат, однако мы не будем углубляться в эти тонкости. Для наших целей можно выразить принцип эквивалентности так: в достаточно малых областях пространства невозможно судить о том, пребываете ли вы в состоянии покоя в гравитационном поле или движетесь с постоянным ускорением в пустом пространстве.

Представьте себе, что вы находитесь в лифте посреди пустого пространства. Нет никакой гравитации, никакого «верха» и «низа». Вы плывете свободно. Затем лифт начинает двигаться с постоянным ускорением. Вы внезапно ощущаете вес. То есть вас прижимает к одной из стенок лифта, которая теперь воспринимается как пол. Если вы возьмете яблоко и отпустите его, оно упадет на пол. Фактически теперь, когда вы движетесь с ускорением, внутри лифта все будет происходить в точности так же, как если бы подъемник вообще не двигался, а покоился бы в однородном гравитационном поле. Эйнштейн понял, что, подобно тому как, находясь в вагоне поезда, вы не можете сказать, стоит он или равномерно движется, так и, пребывая внутри лифта, вы не в состоянии определить, перемещается ли он с постоянным ускорением или находится в однородном гравитационном поле. Результатом этого понимания стал принцип эквивалентности.

Принцип эквивалентности и приведенный пример его проявления будут справедливы лишь в том случае, если инертная масса (входящая во второй закон Ньютона, который определяет, какое ускорение придает телу приложенная к нему сила) и гравитационная масса (входящая в закон тяготения Ньютона, который определяет величину гравитационного притяжения) суть одно и то же (см. гл. 4). Если эти массы одинаковы, то все тела в гравитационном поле будут падать с одним и тем же ускорением независимо от массы. Если же эти две массы не эквивалентны, тогда некоторые тела под влиянием гравитации будут падать быстрее других и это позволит отличить действие тяготения от равномерного ускорения, при котором все предметы падают одинаково. Использование Эйнштейном эквивалентности инертной и гравитационной масс для вывода принципа эквивалентности и, в конечном счете, всей общей теории относительности — это беспрецедентный в истории человеческой мысли пример упорного и последовательного развития логических заключений.

Теперь, познакомившись с принципом эквивалентности, мы можем проследить ход рассуждений Эйнштейна, выполнив другой мысленный эксперимент, который показывает, почему гравитация воздействует на время. Представьте себе ракету, летящую в космосе. Для удобства будем считать, что ее корпус настолько велик, что свету требуется целая секунда, чтобы пройти вдоль него сверху донизу. И наконец, предположим, что в ракете находятся два наблюдателя: один — наверху, у потолка, другой — внизу, на полу, и оба они снабжены одинаковыми часами, ведущими отсчет секунд.

Допустим, что верхний наблюдатель, дождавшись отсчета своих часов, немедленно посылает нижнему световой сигнал. При следующем отсчете он шлет второй сигнал. По нашим условиям понадобится одна секунда, чтобы каждый сигнал достиг нижнего наблюдателя. Поскольку верхний наблюдатель посылает два световых сигнала с интервалом в одну секунду, то и нижний наблюдатель зарегистрирует их с таким же интервалом.

Что изменится, если в этом эксперименте, вместо того чтобы свободно плыть в космосе, ракета будет стоять на Земле, испытывая действие гравитации? Согласно теории Ньютона гравитация никак не повлияет на положение дел: если наблюдатель наверху передаст сигналы с промежутком в секунду, то наблюдатель внизу получит их через тот же интервал. Но принцип эквивалентности предсказывает иное развитие событий. Какое именно, мы сможем понять, если в соответствии с принципом эквивалентности мысленно заменим действие гравитации постоянным ускорением. Это один из примеров того, как Эйнштейн использовал принцип эквивалентности при создании своей новой теории гравитации.

Итак, предположим, что наша ракета ускоряется. (Будем считать, что она ускоряется медленно, так что ее скорость не приближается к скорости света.) Поскольку корпус ракеты движется вверх, первому сигналу понадобится пройти меньшее расстояние, чем прежде (до начала ускорения), и он прибудет к нижнему наблюдателю раньше чем через секунду. Если бы ракета двигалась с постоянной скоростью, то и второй сигнал прибыл бы ровно настолько же раньше, так что интервал между двумя сигналами остался бы равным одной секунде. Но в момент отправки второго сигнала благодаря ускорению ракета движется быстрее, чем в момент отправки первого, так что второй сигнал пройдет меньшее расстояние, чем первый, и затратит еще меньше времени. Наблюдатель внизу, сверившись со своими часами, зафиксирует, что интервал между сигналами меньше одной секунды, и не согласится с верхним наблюдателем, который утверждает, что посылал сигналы точно через секунду.

В случае с ускоряющейся ракетой этот эффект, вероятно, не должен особенно удивлять. В конце концов, мы только что его объяснили! Но вспомните: принцип эквивалентности говорит, что то же самое имеет место, когда ракета покоится в гравитационном поле. Следовательно, даже если ракета не ускоряется, а, например, стоит на стартовом столе на поверхности Земли, сигналы, посланные верхним наблюдателем с интервалом в секунду (согласно его часам), будут приходить к нижнему наблюдателю с меньшим интервалом (по его часам). Вот это действительно удивительно!

Можно спросить: означает ли это, что гравитация изменяет течение времени, или она просто нарушает работу часовых механизмов? Предположим, что нижний наблюдатель поднимается наверх, где он и его партнер сверяют показания своих часов. Поскольку часы у них идентичны, наверняка теперь они убедятся, что секунды, отмеряемые обоими часами, одинаковы. То есть с часами у нижнего наблюдателя все в порядке. Где бы часы ни оказались, они всегда измеряют ход времени в данном месте.

Подобно тому как специальная теория относительности говорит нам, что время идет по-разному для наблюдателей, движущихся друг относительно друга, общая теория относительности объявляет, что ход времени различен для наблюдателей, находящихся в разных гравитационных полях. Согласно общей теории относительности нижний наблюдатель регистрирует более короткий интервал между сигналами, потому что у поверхности Земли время течет медленнее, поскольку здесь сильнее гравитация. Чем сильнее гравитационное поле, тем больше этот эффект. Законы движения Ньютона положили конец идее абсолютного положения в пространстве. Теория относительности, как мы видим, поставила крест на абсолютном времени.

Данное предсказание было проверено в 1962 г. с помощью пары очень точных часов, установленных на вершине и у подножия водонапорной башни. Часы у основания, которые были ближе к Земле, шли медленнее в точном соответствии с общей теорией относительности. Этот эффект очень мал: часы, размещенные на поверхности Солнца, лишь на минуту в год обгоняли бы такие же часы, находящиеся на Земле. Однако с появлением сверхточных навигационных систем, получающих сигналы от спутников, разность хода часов на различных высотах приобрела практическое значение. Если бы аппаратура игнорировала предсказания общей теории относительности, ошибка в определении местоположения могла бы достигать нескольких километров!

Наши биологические часы также реагируют на изменения хода времени. Если один из близнецов живет на вершине горы, а другой — у моря, первый будет стареть быстрее второго. И если им доведется встретиться снова, один из них окажется старше. В данном случае различие в возрастах будет ничтожным, но оно существенно увеличится, коль скоро один из близнецов отправится в долгое путешествие на космическом корабле, который разгоняется до скорости, близкой к световой. Когда странник возвратится, он будет намного моложе брата, оставшегося на Земле. Этот случай известен как парадокс близнецов, но парадоксом он является только для тех, кто держится за идею абсолютного времени. В теории относительности нет никакого уникального абсолютного времени — для каждого индивидуума имеется своя собственная мера времени, которая зависит от того, где он находится и как движется.

До 1915 г. пространство и время мыслились как арена, на которой разворачиваются события, никак ее саму не затрагивающие. Это можно сказать даже о специальной теории относительности. Тела двигались, силы притягивали или отталкивали, никак не затрагивая времени и пространства, которые просто длились. Казалось естественным думать, что пространство и время были и будут всегда. Однако появление общей теории относительности в корне изменило ситуацию. Пространство и время обрели статус динамических сущностей. Когда перемещаются тела или действуют силы, они вызывают искривление пространства и времени, а структура пространства-времени, в свою очередь, сказывается на движении тел и действии сил. Пространство и время не только влияют на все, что случается во Вселенной, но и сами от всего этого зависят. Как невозможно говорить о событиях во Вселенной вне понятий пространства и времени, так после появления общей теории относительности стало бессмысленным говорить о пространстве и времени вне пределов Вселенной. За десятилетия, прошедшие с 1915 г ., это новое понимание пространства и времени радикально изменило нашу картину мира. Как вы узнаете далее, старая идея о неизменном мироздании навсегда уступила место образу динамичной, расширяющейся Вселенной, которая, по всей видимости, появилась в определенный момент в прошлом и, возможно, прекратит существование в некоторый момент в будущем.

Глава седьмая. РАСШИРЯЮЩАЯСЯ ВСЕЛЕННАЯ

Если посмотреть на небо ясной безлунной ночью, то самыми яркими объектами, скорее всего, окажутся планеты Венера, Марс, Юпитер и Сатурн. А еще вы увидите целую россыпь звезд, похожих на наше Солнце, но расположенных намного дальше от нас. Некоторые из этих неподвижных звезд в действительности едва заметно смещаются друг относительно друга при движении Земли вокруг Солнца. Они вовсе не неподвижны! Это происходит, потому что такие звезды находятся сравнительно близко к нам. Вследствие движения Земли вокруг Солнца мы видим эти более близкие звезды на фоне более далеких из различных положений. Тот же самый эффект наблюдается, когда вы едете на машине, а деревья у дороги словно бы изменяют свое положение на фоне ландшафта, уходящего к горизонту (рис. 14). Чем ближе деревья, тем заметнее их видимое движение. Такое изменение относительного положения называется параллаксом. В случае со звездами это настоящая удача для человечества, потому что параллакс позволяет нам непосредственно измерить расстояние до них.

Рис. 14. Звездный параллакс.

Движетесь ли вы по дороге или в космосе, относительное положение ближних и дальних тел изменяется по мере вашего движения. Величина этих изменений может быть использована для определения расстояния между телами.

щелкните, и изображение увеличится

Самая близкая звезда, Проксима Центавра, удалена от нас примерно на четыре световых года или сорок миллионов миллионов километров. Большинство других звезд, видимых невооруженным глазом, находятся в пределах нескольких сотен световых лет от нас. Для сравнения: от Земли до Солнца всего восемь световых минут! Звезды разбросаны по всему ночному небу, но особенно густо рассыпаны они в полосе, которую мы называем Млечным Путем. Уже в 1750 г. некоторые астрономы высказывали предположение, что вид Млечного Пути можно объяснить, если считать, что большинство видимых звезд собраны в дискообразную конфигурацию, наподобие тех, что мы теперь называем спиральными галактиками. Только через несколько десятилетий английский астроном Уильям Гершель подтвердил справедливость этой идеи, кропотливо подсчитывая число звезд, видимых в телескоп на разных участках неба. Тем не менее полное признание эта идея получила лишь в двадцатом столетии. Теперь мы знаем, что Млечный Путь — наша Галактика — раскинулся от края до края приблизительно на сто тысяч световых лет и медленно вращается; звезды в его спиральных рукавах совершают один оборот вокруг центра Галактики за несколько сотен миллионов лет. Наше Солнце — самая обычная желтая звезда средних размеров — находится у внутреннего края одного из спиральных рукавов. Определенно, мы проделали длинный путь со времен Аристотеля и Птолемея, когда люди считали Землю центром Вселенной.

Современная картина Вселенной начала прорисовываться в 1924 г., когда американский астроном Эдвин Хаббл доказал[7], что Млечный Путь не единственная галактика. Он открыл, что существует множество других звездных систем, разделенных обширными пустыми пространствами. Чтобы подтвердить это, Хаббл должен был определить расстояние от Земли до других галактик. Но галактики находятся так далеко, что, в отличие от ближайших звезд, действительно выглядят неподвижными. Не имея возможности использовать параллакс для измерения расстояний до галактик, Хаббл вынужден был применить косвенные методы оценки расстояний. Очевидной мерой расстояния до звезды является ее яркость. Но видимая яркость зависит не только от расстояния до звезды, но также и от светимости звезды — количества испускаемого ею света. Тусклая, но близкая к нам звезда затмит самое яркое светило из отдаленной галактики. Поэтому, чтобы использовать видимую яркость в качестве меры расстояния, мы должны знать светимость звезды.

___________

[7] Серьезные аргументы в пользу внегалактической природы Туманности Андромеды и ряда других объектов существовали и до Хаббла. Однако Хаббл первым обнаружил в Туманности Андромеды цефеиды, по которым смог определить расстояние и тем самым доказал ее внегалактическое расположение.

___________

Светимость ближайших звезд можно рассчитать по их видимой яркости, поскольку благодаря параллаксу мы знаем расстояние до них. Хаббл заметил, что близкие звезды можно классифицировать по характеру испускаемого ими света. Звезды одного класса всегда имеют одинаковую светимость. Далее он предположил, что если мы обнаружим звезды этих классов в далекой галактике, то им можно приписать ту же светимость, какую имеют подобные звезды поблизости от нас. Располагая такой информацией, несложно вычислить расстояние до галактики. Если вычисления, проделанные для множества звезд в одной и той же галактике, дают одно и то же расстояние, то можно быть уверенным в правильности нашей оценки. Таким способом Эдвин Хаббл вычислил расстояния до девяти различных галактик[8].

_____________

[8] Здесь необходимо сделать ряд уточнений.

Идея классификации звезд по типам принадлежит не Хабблу. Основы современной (Гарвардской) спектральной классификации звезд заложил на рубеже XIX и ХХ вв. американский астроном Э. Кэннон. 2. Связь между светимостью и спектральным классом звезд обнаружил тоже не Хаббл, а Герцшпрунг и Рессел. 3. Не все звезды одного спектрального класса имеют одинаковую светимость — почти в каждом классе есть обычные звезды и звезды‑гиганты значительно большей светимости. 4. Обычные звезды были в те времена неразличимы в других галактиках. Поэтому Хаббл использовал для оценки расстояния до галактик именно звезды‑гиганты, причем не обычные, а особого типа переменные звезды — цефеиды, светимость которых периодически меняется. Их особенность состоит в том, что период переменности напрямую связан со светимостью в максимуме блеска. Именно измеряя период изменений блеска цефеид в других галактиках, Хаббл смог определить их светимость и расстояние до них.

_____________

Сегодня мы знаем, что звезды, видимые невооруженным глазом, составляют ничтожную долю всех звезд. Мы видим на небе примерно 5000 звезд — всего лишь около 0,0001% от числа всех звезд нашей Галактики, Млечного Пути. А Млечный Путь — лишь одна из более чем сотни миллиардов галактик, которые можно наблюдать в современные телескопы. И каждая галактика содержит порядка сотни миллиардов звезд. Если бы звезда была крупинкой соли, все звезды, видимые невооруженным глазом, уместились бы в чайной ложке, однако звезды всей Вселенной составили бы шар диаметром более тринадцати километров.

Звезды настолько далеки от нас, что кажутся светящимися точками. Мы не можем различить их размер или форму. Но, как заметил Хаббл, есть много различных типов звезд, и мы можем различать их по цвету испускаемого ими излучения[9]. Ньютон обнаружил, что, если солнечный свет пропустить через трехгранную стеклянную призму, он разложится на составляющие цвета, подобно радуге (рис. 15). Относительная интенсивность различных цветов в излучении, испускаемом неким источником света, называется его спектром. Фокусируя телескоп на отдельной звезде или галактике, можно исследовать спектр испускаемого ими света.

_____________

[9] Первым это заметил не Хаббл. Различие цвета звезд известно с глубокой древности. Первые попытки спектральной классификации звезд были предприняты в середине XIX в.

_____________

Рис. 15. Звездный спектр.

Анализируя спектр излучения звезды, можно определить как ее температуру, так и состав атмосферы.

щелкните, и изображение увеличится

В числе прочего излучение тела позволяет судить о его температуре. В 1860 г. немецкий физик Густав Кирхгоф установил, что любое материальное тело, например звезда, будучи нагретым, испускает свет или другое излучение, подобно тому как светятся раскаленные угли. Свечение нагретых тел обусловлено тепловым движением атомов внутри них. Это называется излучением черного тела (несмотря на то что сами нагретые тела не являются черными). Спектр чернотельного излучения трудно с чем-нибудь перепутать: он имеет характерный вид, который изменяется с температурой тела (рис. 16). Поэтому излучение нагретого тела подобно показаниям термометра. Наблюдаемый нами спектр излучения различных звезд всегда похож на излучение черного тела, это своего рода извещение о температуре звезды.

Рис. 16. Спектр излучения черного тела.

Все тела — а не только звезды — испускают излучение вследствие теплового движения составляющих их микроскопических частиц. Распределение излучения по частоте характеризует температуру тела.

щелкните, и изображение увеличится

Если внимательно изучить звездный свет, он сообщит нам еще больше информации. Мы обнаружим отсутствие некоторых строго определенных цветов, причем у разных звезд они будут разными. И поскольку мы знаем, что каждый химический элемент поглощает характерный для него набор цветов, то, сравнивая эти цвета с теми, что отсутствуют в спектре звезды, мы сможем точно определить, какие элементы присутствуют в ее атмосфере.

В 1920‑е гг., когда астрономы начали изучать спектры звезд в других галактиках, было обнаружено нечто очень интересное: это оказались те же самые характерные наборы отсутствующих цветов, что и у звезд в нашей собственной галактике, но все они были смещены к красному концу спектра, причем в одинаковой пропорции. Физикам смещение цвета или частоты известно как эффект Доплера.

Мы все знакомы с тем, как это явление воздействует на звук. Прислушайтесь к звуку проезжающего мимо вас автомобиля. Когда он приближается, звук его двигателя или гудка кажется выше, а когда машина уже проехала мимо и стала удаляться, звук понижается. Полицейский автомобиль, едущий к нам со скоростью сто километров в час, развивает примерно десятую долю скорости звука. Звук его сирены представляет собой волну, чередование гребней и впадин. Напомним, что расстояние между ближайшими гребнями (или впадинами) называется длиной волны. Чем меньше длина волны, тем большее число колебаний достигает нашего уха каждую секунду и тем выше тон, или частота, звука.

Эффект Доплера вызван тем, что приближающийся автомобиль, испуская каждый следующий гребень звуковой волны, будет находиться все ближе к нам, и в результате расстояния между гребнями окажутся меньше, чем если бы машина стояла на месте. Это означает, что длины приходящих к нам волн становятся меньше, а их частота — выше (рис. 17). И наоборот, если автомобиль удаляется, длина улавливаемых нами волн становится больше, а их частота — ниже. И чем быстрее перемещается автомобиль, тем сильнее проявляется эффект Доплера, что позволяет использовать его для измерения скорости.

Рис. 17. Эффект Доплера.

Когда источник, испускающий волны, движется по направлению к наблюдателю, длина волн уменьшается. При удалении источника она, напротив, увеличивается. Это и называют эффектом Доплера.

щелкните, и изображение увеличится

Свет и радиоволны ведут себя подобным же образом. Полиция использует эффект Доплера для определения скорости автомобилей путем измерения длины волны отраженного от них радиосигнала. Свет представляет собой колебания, или волны, электромагнитного поля. Как мы отмечали в гл. 5, длина волны видимого света чрезвычайно мала — от сорока до восьмидесяти миллионных долей метра. Человеческий глаз воспринимает световые волны разной длины как различные цвета, причем наибольшую длину имеют волны, соответствующие красному концу спектра, а наименьшую — относящиеся к синему концу. Теперь представьте себе источник света, находящийся на постоянном расстоянии от нас, например звезду, испускающую световые волны определенной длины. Длина регистрируемых волн будет такой же, как у испускаемых. Но предположим теперь, что источник света начал отдаляться от нас. Как и в случае со звуком, это приведет к увеличению длины волны света, а значит, спектр сместится в сторону красного конца.

Доказав существование других галактик, Хаббл в последующие годы занимался определением расстояний до них и наблюдением их спектров. В то время многие предполагали, что галактики движутся беспорядочно, и ожидали, что число спектров, смещенных в синюю сторону, будет примерно таким же, как число смещенных в красную. Поэтому полной неожиданностью стало открытие того, что спектры большинства галактик демонстрируют красное смещение — почти все звездные системы удаляются от нас! Еще более удивительным оказался факт, обнаруженный Хабблом и обнародованный в 1929 г.: величина красного смещения галактик не случайна, а прямо пропорциональна их удаленности от нас. Другими словами, чем дальше от нас галактика, тем быстрее она удаляется! Отсюда вытекало, что Вселенная не может быть статичной, неизменной в размерах, как считалось ранее. В действительности она расширяется: расстояние между галактиками постоянно растет.

Осознание того, что Вселенная расширяется, произвело настоящую революцию в умах, одну из величайших в двадцатом столетии. Когда оглядываешься назад, может показаться удивительным, что никто не додумался до этого раньше. Ньютон и другие великие умы должны были понять, что статическая Вселенная была бы нестабильна. Даже если в некоторый момент она оказалась бы неподвижной, взаимное притяжение звезд и галактик быстро привело бы к ее сжатию. Даже если бы Вселенная относительно медленно расширялась, гравитация в конечном счете положила бы конец ее расширению и вызвала бы сжатие. Однако, если скорость расширения Вселенной больше некоторой критической отметки, гравитация никогда не сможет его остановить и Вселенная продолжит расширяться вечно.



Страница сформирована за 0.91 сек
SQL запросов: 181