УПП

Цитата момента



Без детей хорошо, а все равно как-то плохо.
Лучше и не скажешь!

Синтон - тренинг центрАссоциация профессионалов развития личности
Университет практической психологии

Книга момента



Как перестать злиться - совет девочкам: представь, что на тебя смотрит мальчик, который тебе нравится. Посмотрись в зеркало, когда злишься. Хочешь, чтобы он увидел тебя, злораду такую, с вредным голосом и вредными движениями?

Леонид Жаров, Светлана Ермакова. «Как жить, когда тебе двенадцать? Взрослые разговоры с подростками»

Читать далее >>


Фото момента



http://old.nkozlov.ru/library/fotogalereya/d4103/
Китай

О, ПОЛЕ, ПОЛЕ…

Так и хочется продолжить цитатой из Пушкина: "Кто тебя усеял мертвыми костями?" И даже образ готов: поле новых идей усеяно костями изобретателей, не знающих теории и не владеющих приемами фантазирования.

Однако не о том поле речь. В прошлом номере я рассказал об изобретении, которое сделал ученик девятого класса - о "тяжелой воде", в которой плавали железные шарики, поддерживаемые навесу магнитным полем. Наверно, многие читатели подумали тогда: ну, этот мальчик - вундеркинд, мало того, что он знал теорию фантазирования, так он еще и знал, как действует магнитное поле, и догадался его использовать. Не каждый мальчик на его месте…

Уверяю вас: каждый. И мальчик вундеркиндом не был. Более того, по физике в школе имел твердую тройку. Но методы развития воображения и решения изобретательских задач он действительно усвоил. А больше и не нужно было. Ибо среди этих методов есть такой, который называется "вепольным анализом". И если при словах "О, поле, поле…" у кого-то возникает ассоциация с пушкинским Русланом, то при словах "вепольный анализ" практически всем становится не по себе - на ум приходит "математический анализ" с его интегралами или еще более таинственный и сложный "тензорный анализ". А все куда проще (в теории развития воображения, если вы обратили внимания, сложных вещей нет вообще, - семиклассники овладевают правилами не хуже академиков). "Вепольный анализ" всего лишь призывает никогда не забывать о существовании "веполей". А таинственный "веполь" - это всего лишь два слова "вещество" и "поле", объединенные вместе (опять этот прием объединения, даже в словотворчестве!).

Итак, прошу запомнить на всю оставшуюся жизнь: в мире нет вещества, а есть вещество и поле, и любой физик скажет, что так оно и есть. Вещество - это наше тело, это корпус машины, это кукла, это станок… А поле - это радио, которое мы слушаем (электромагнитное поле), это поле тяжести, позволяющее нам ходить, а не летать… Физические поля невидимы глазу, и потому о них часто забывают изобретатели, привыкшие иметь дело с механизмами, которые можно пощупать и поломать. А между тем, в изобретательском деле, да и в развитии фантазии, без полей, как без воды, - и ни туды, и ни сюды.

Решил бы упомянутый выше девятиклассник задачу о поплавке, если бы не использовал магнитное поле? Нет, не решил бы. Как не могли ее, эту задачу, решить взрослые дяди, начисто забывшие, что, кроме вещества, есть еще и поле. Вот вам изобретательская задача, очень важная в наших израильских условиях. Как мы уже хорошо усвоили, воду нужно экономить. А растения нужно поливать, даже если воды мало. В Израиле это противоречие разрешается использованием капельного орошения: вода по трубочкам поступает к каждому растению отдельно. Но, господа, ТРИЗ утверждает, что это еще не решение задачи! Это не предел воображения. Судите сами. Чтобы расходовать воду сверхэкономно, нужно воду, вылетающую из шланга, распылить на мельчайшие капельки. А не получается - капельки, вылетая, слипаются друг с другом, возникают большие капли, вода тратится зря. Что делать? Любой человек, знакомый с теорией развития воображения и с "вепольным анализом", скажет, не задумываясь: нужно достроить "веполь". Вещество у нас есть - водяные капли. А где поле?

Нам нужно, чтобы капли не липли друг к другу? Значит, нужно, чтобы между каплями существовали некие силы, отталкивающие их друг от друга, силы, не дающие капелькам слипаться. "Обычный" изобретатель, привыкший иметь дело только с тем, что видно глазу, так и останется в недоумении: ну, где он возьмет силы отталкивания? А изобретатель-тризовец скажет: да зарядите вы воду статическим электричеством, наэлектризуйте капли! И они будут сами друг от друга отталкиваться. Кстати, наэлектризовать струю воды очень несложно, а результат вы увидите, когда получите очередной счет за воду: расход драгоценной жидкости для полива уменьшится раза в два…

Метод электризации изобретатели, если не забывают о "веполе", используют очень часто. Скажем, вам нужно быстро и эффективно высушить много меховых шкурок после влажной очистки. Все просто: вы заряжаете шкурки электричеством, слипшиеся шетинки распушиваются, отделяются друг от друга, и мех сохнет в несколько раз быстрее. Или вот, "женское" изобретение: способ быстрого получения пышной прически. Женщину в парикмахерской сажают на… "электрический" стул с изолированными ножками и подводят напряжение. Волосы тут же встают дыбом, их укладывают, как угодно душе заказчицы, и остается лишь побрызгать лаком (кстати, тоже наэлектризованным для экономии материала).

Попробуйте решить задачку. Эталон прямолинейности - туго натянутая стальная нить. Но она все равно прогибается под действием поля тяжести. Что нужно сделать, чтобы нить осталась прямой? Задача простенькая, если не забывать о "веполе".

ТАЙНЫ "ВЕПОЛЕЙ"

Надо сказать, что изобретатели очень вольно обращаются с известными науке полями. В школе мы проходили, что есть поле электромагнитное, есть поле тяжести, а есть еще еще два, от которых нам ровно никакой пользы: ядерное и слабое. Эти два последних поля в изобретательстве не используются - разве что для развития воображения. А вместо них придумали несколько других полей: механическое и тепловое, оптическое и звуковое… Для облегчения рассуждений. Фантазировать так фантазировать. Если вы получили по уху, значит, на вас подействовали механическим полем, только и всего. А если ошпарились кипятком, значит, ощутили действие теплового поля. Все просто и понятно.

Так вот, и методика развития воображения, и теория изобретательства утверждают: если хотите, чтобы получилась хорошая идея, нужно обязательно использовать какое-нибудь поле. Хотите, допустим, придумать новый фантастический скафандр. Непременно сделайте так, чтобы в этом скафандре использовалось какое-нибудь поле. Например, электромагнитное. Как? А хотя бы так: сделайте матерчатый скафандр двухслойным и зарядите электричеством. Тогда внутренняя оболочка будет отталкиваться от внешней, скафандр станет жестким - что и нужно для работы в космосе.

Кстати, вы умеете управлять полем тяжести? Наверняка нет. Никто пока не умеет. Поэтому поле тяжести в изобретательских "веполях" не используется - только при конструировании новых фантастических идей. Ядерное и слабое поле - тоже. Изобретателям подавай что попроще - поля механические, тепловые, электромагнитные…

Выше я рассказывал о том, как один умный школьник решал задачу о "тяжелой воде" - он предложил бросить в воду много мелких металлических шариков. Мальчик-то умный, но не подумал о "веполе". Если уж действовать по правилам развития воображения, нужно не просто бросить в воду металлические шарики, но еще и намагнитить их. Появляется поле - магнитное, и как упрощаются многие проблемы. Нужно вытащить шарики? Возьмите магнит. Нужно, чтобы шарики собрались у одной из стенок? Возьмите магнит…

А вот пример из практики. Иногда танкеры сбрасывают в море воду, загрязненную нефтью. За такие штучки полагается большой штраф, но попробуй, выясни, с какого именно танкера сброшена грязная вода! Нужно создать "веполь": когда на танкер загружается нефть, в нее добавляют мельчайшие магнитные частицы (для каждого танкера - свой сорт). Если в море обнаружили нефтяное пятно, берут пробу нефти и сразу же говорят: это пятно с танкера "Мария Медичи"…

Теперь - задача. Как-то для одного эксперимента нужно было сжать стальную пружину, поместить ее внутрь прибора, причем там, чтобы она не разжалась, и оставить. По условиям опыта, пружина должна была разжаться этак через полчаса. Сжать-то просто, но ведь это пружина - она сразу распрямится, едва ее отпустить! Связать? Нельзя, ведь внутри прибора пружина должна быть свободна…

Я уже вижу, как читатели подсказывают: нужно применить магнитное поле. Сжать пружину и держать в таком состоянии с помощью магнитов. А вы себе представляете, какой мощности должен быть такой магнит? Да и вообще - непрактично. Давайте что-нибудь попроще.

Что ж, есть ведь и другие поля. Механическое? Уже предлагали - связать. Остается тепловое. Его и использовали. Сжали пружину и заморозили, поместив в сухой лед. Лед и держал пружину, пока не испарился от тепла. Просто и красиво. Давайте для практики решим еще одну задачу. Кстати, она не так уж проста, в реальной жизни прошло немало лет, прежде чем один режиссер додумался до этой идеи. До какой? Вот условие задачи. Все сейчас знают, что для съемки мультфильма (или, как теперь говорят - анимационного фильма) делают множество рисунков. В десятиминутном фильме - больше 15 тысяч рисунков! Решил некий режиссер снять контурный фильм. Обычно делают так. На фанерный лист цветным шнуром выкладывают рисунок. Оператор снимает кадр, художник передвигает шнур, оператор снимает следующий кадр…

Режиссер долго думал, как бы ускорить этот нудный процесс. Он-то придумал, а вы? Надеюсь, что и вы тоже. Да, нужно создать "веполь". Есть фанера, есть цветной шнур, а где поле? Нужно взять не простой шнур, а такой, в состав которого входит железный порошок. Или вообще обойтись без шнура, а взять гибкую трубку, наполнить ее железным порошком и… Ну, дальше ясно: поместить за фанерой сильный магнит и управлять движением шнура или трубки. Фильм, на съемку которого прежде уходил месяц, режиссер-изобретатель снял за один рабочий день. А следующую задачу решите сами. Когда в бензобаке автомобиля кончается бензин, это видно на шкале прибора перед водителем. Но согласитесь, прибор - система сложная, может оказать. Иногда стрелка еще далека от нуля, а в баке пусто. Нельзя ли сделать так, чтобы бензобак без всяких приборов сообщал водителю о том, что он пуст?

ФИЗИКА И ФАНТАСТИКА

Ах, какая это скучная материя: учить школьную физику. Закон Ома, например. Сила тока прямо пропорциональна чему-то там, сразу и не запомнишь. А если запомнишь, то забудешь. А если не забудешь, то потому только, что изберешь физику своей профессией. А просто так - к чему ж?

Ошибаетесь, господа. Очень романтическая штука - закон Ома. И электризация тел трением - как звучит-то! Я уж не говорю о коронном разряде - это верх фантастики…

Я вовсе не иронизирую. Для человека с развитым воображением любой, самый, казалось бы, сухой закон природы может стать источником вдохновенного полета мысли. И доказательства этому утверждению легко найти в фантастической литературе.

В 1974 году советский фантаст В.Грешнов опубликовал рассказ "Диверсия ЭлЛТ-73". Идея рассказа почерпнута из учебника физики один к одному. Все знают, что на поверхности некоторых предметов при трении может возникнуть электрический заряд. Так вот, в одной лаборатории (очень важной и секретной) вдруг стала из рук вон плохо идти работа. Эксперименты срывались один за другим. Разыгрывается драматическая история - начальник катит бочку на подчиненного, подчиненный срывает злость на жене, семья на грани развала, а лаборатория - на грани срыва квартального плана. И лишь в конце динамично закрученного сюжета выясняется, что всему виной… шелковые платья сотрудниц и нейлоновые рубашки сотрудников. Шелк и нейлон очень быстро электризуются трением, эти наведенные электрические поля, никем не учтенные, и влияют на аппаратуру, заставляя ее безбожно врать. Все кончается хорошо, и герой даже получает премию, а читатель на всю жизнь запоминает, что такое электризация тел трением.

Фантасты любят использовать электрические заряды и разряды. А если еще воспользоваться уже известными нам приемами фантазирования, например, увеличением, что получится такой замечательный рассказ, как "Олгой-хорхой" И.Ефремова, опубликованный в 1944 году. В свое время это был, можно сказать, рассказ в модном ныне жанре ужаса. У читателя стыла в жилах кровь, когда на героя рассказа нападал огромный двухметровый червяк, он даже не дотрагивался до человека, приближался на метр или два, и человек бледнел, синел, падал и… Да, некоторые даже умирали. В чем дело? Физический закон: действие электростатического поля.

Если рассказ И.Ефремова страшен своей убедительностью, то В.Журавлева в рассказе "Человек, создавший Атлантиду", написанном в 1960 году, использовала законы статического электричества в мирных целях. Герой этого рассказа изобрел двухслойный скафандр. Наружная оболочка сделана из пластика, внутренняя - из металла. В сущности, внутренний слой представляет собой фольгу, только очень прочную. При спуске водолаза под воду оболочку заряжают положительным электричеством от электростатического генератора. Из школьной физики мы знаем, что одноименные заряды отталкиваются. Поэтому каждый участок внутренней оболочки стремится оттолкнуть расположенный напротив участок наружной оболочки. Что получается? Скафандр раздувается и становится жестким - что и нужно для погружения на большую глубину.

Кстати, идея не просто красивая, но вполне патентоспособная. Впоследствии такие скафандры были созданы, кто-то получил авторское свидетельство, а фантаст, как всегда,- моральное удовлетворение. А всего-то, использован закон физики, который проходят в шестом классе (даже в израильских школах).

Если уж говорить о том, как подстегивает работу воображения романтическая фраза о том, что "одноименное отталкивается", то нужно непременно вспомнить Сирано де Бержерака. В убогости воображения его не обвинишь. А потрясшие современников смелостью идеи Сирано черпал из тривиального даже для того времени учебника физики. В "Государствах и империях Луны" (1656 год) Сирано описал путешествие на Луну при помощи двух магнитов, отталкивающих друг друга. Прошли "всего" два с половиной века, и ту же идею использовал другой фантаст, Т.Герцка, в романе "Заброшенный в будущее" (1895 год). Как просто, оказывается, распалить развитое воображение: достаточно вспомнить сухой и скучный учебник…

КУРТКА НА ШАРОВОЙ МОЛНИИ

Давайте еще немного поговорим о том, как простые законы физики позволяют фантастам придумывать удивительные истории. Немного воображения, и…

Вы знаете, что такое коронный разряд? Наверняка забыли, ведь это явление каждый изучал, когда учился в девятом классе бывшей советской школы. Что ж, попробуйте отыскать в библиотеках рассказ Ю.Моралевича "Электролет профессора Мухина".

Рассказ старый, опубликован был аж в 1960 году. А речь в нем идет о том, как этот самый профессор построил замечательный самолет, двигатели которого работали на этом самом коронном разряде. Все строго научно, и все совершенно фантастично - и полеты в стратосферу, и борьба с американским шпионом с помощью… коронного разряда. Вы ж понимаете, что для советской литературы шестидесятых годов американские шпионы значили то же, что для современной какие-нибудь крутые мафиози. Каждому времени - свои "герои". Но герои приходят и уходят, а коронный разряд, которым наши контрразведчики их лупили, он-то остается!

Вы когда-нибудь видели шаровую молнию? Наверняка видели - хоть раз в жизни. И если вы не знаете, что же это такое, читайте фантастические рассказы, а не учебники физики. В учебниках написано только, что "явление это мало изучено", а фантасты говорят - "ну и что, давайте используем, а там разберемся". Нормальный подход для людей с богатым воображением. В конце концов, электричеством все пользуются, а кто знает, что такое электрон?

В первой половине ХХ века фантасты наладили прямо-таки серийное производство шаровых молний: сначала это сделал Александр Беляев в повести "Золотая гора" (1929 год), а потом пошло-поехало, и этот феномен явного перепроизводства шаровых молний легко объяснить. Фантасты, как и физики, думали над тем, каким должно быть современное оружие. Атомных бомб еще не было, а шаровая молния, как известно, способна при каждом удобной случае взрываться, выделяя огромную энергию. Фантасты использовали то, что было, как говорится, под рукой, и кстати, опередили науку на многие десятилетия - ведь ученые и до сих пор не знают, с какой стороны подойти к тайне шаровой молнии…

Естественно, что, как и ученые, фантасты думали не только о военном, но и о мирном использовании шаровых молний. Например, для накопления огромной энергии в небольшом объеме. Прочитайте, к примеру, рассказ Г.Альтова "Скучный капитан" (1960 год), и если после этого вы не захотите посвятить остаток жизни созданию аккумуляторов на шаровых молниях, значит, вам лучше заниматься не физикой, а коллекционированием марок…

Кстати, в реальности вслед за открытием нового источника энергии следует, как правило, его военное использование (пример - атомная бомба), а уж потом мирное (атомная электростанция). В фантастике - как в жизни. Из чего следует, наверно, что у творческой фантазии свои законы - единые для физики и для полета воображения…

Помните, мы говорили о таинственных "веполях", помогающих изобретателям решать сложные творческие задачи? Напомню: веполь - это комбинация вещества и физического поля, например, поля тяжести. Кто первым "изобрел" веполь? Думаете - изобретатели? Нет - фантасты, конечно. Пример - электромагнитные поля, используемые для защиты от нападения противника. "Защитные поля" в фантастике сейчас не менее популярны, чем пресловутые бластеры. Сейчас уже трудно установить, кто первым ввел в фантастику защитные поля и барьеры. Но уже в 1928 году А.Беляев писал о них в повести "Борьба в эфире". А потом они были в "Порте Каменных Бурь" Г.Альтова (1965 год), романе К.Саймака "Все живое" (1965 год) и… Нет, не буду перечислять - попробуйте сами вспомнить.

В романе А.Азимова "Конец Вечности" (1952 год) вся цивилизация представляет собой, по сути, единый веполь: человек (вещество) и техника (поле). Предметы домашнего обихода, одежда, дома, заводы, продукция этих заводов - все является не более чем сложной комбинацией силовых электромагнитных полей.

Начиная что-то выдумывать, фантасты не останавливаются на половине путы (я уже говорил, что для развития воображения это одно из основных требований - не останавливаться!). Если придумали веполь, то давайте создадим идеальный веполь - на все случаи жизни. Прочитайте "Ослика и аксиому" Г.Альтова (1966 год). Не стану пересказывать, просто процитирую: "Машина, сделанная из серого магнитного порошка и электромагнитного поля, будет чрезвычайно простой. Ей, например, не нужны винтовые соединения, не нужны шарниры; под действием поля металл может мгновенно менять форму. Меняющийся металл - вот в чем дело."

Ну хорошо, идеальный веполь фантасты уже придумали. А идеальную шаровую молнию? В фантастике ее нет - попробуйте придумать сами.

ОБЫЧНЫЕ РОБОТЫ ФАНТАСТИКИ

Настоящий турист может и в сильный ливень с помощью единственной спички разжечь костер. Хороший писатель-фантаст с помощью простых приемов фантазирования придумает вам идею, способную удивить ученых.

Подхожу к полкам с книгами любимых писателей-фантастов. Вот Азимов - обыкновенный "русский" еврей, вывезенный в Америку в детстве. Биохимик. Знаток многих наук. Он много лет "жил" в будущем мире, в мире ХХII века. В воображении, конечно. Написал о будущем сотни книг. Среди них - немало повестей, где будущее просто арена для приключений. А есть у Азимова произведения серьезные и сложные, в которых для предвидения использован весь арсенал науки о прогнозировании.

В середине пятидесятых годов, когда первые счетно-вычислительные машины выполняли в секунду каких-то две-три тысячи операций, а в СССР кибернетика числилась еще в продажных девках империализма, Азимов опубликовал рассказ "Все грехи мира". Обязательно перечитайте его. К сожалению, писателям-фантастам не выдают патентов ни на изобретения, ни на открытия, сделанные героями их произведений. Иначе Азимов обязательно получил бы патент на изобретение глобальной компьютерной системы, к которой современная кибернетика только-только подбирается. Азимов писал о Мультиваке - суперкомпьютере, в который стекается информация обо всем, что происходит на планете. О людях - в том числе. Взял фантаст "обычый" компьютер, использовал обычный прием увеличения…

Ну хорошо, - скажете вы, - Азимов, обладая богатым воображением, сумел разглядеть будущее кибернетики, но ведь о самих-то компьютерах он знал! Они уже были! А вот предсказал бы он своего Мультивака на десять лет раньше? Нет, слабо. Это лишь Нострадамус был способен за три века…

Стоп. Давайте чуть углубимся в прошлое - в начало ХХ столетия. Перечитайте повесть русского писателя Александра Богданова "Красная звезда" (1908 год). Там много интересного, в том числе и таких предвидений, которые сбылись. Русский революционер летит на планету Марс в межпланетном корабле. И вот, что важно - корабль имеет на борту вычислительные устройства и в свободном полете управляется именно ими - компьютерами, как мы сейчас говорим. Кибернетику Богданов, конечно, не предсказал, но модные ныне автоматизированные системы управления (в том числе космические) - несомненно. "Обычный" компьютер и "обычный" прием универсализации.

Богданов патента на изобретение не получил. И Карел Чапек тоже. А ведь роботов изобрел не математик, не инженер, а чешский писатель, и произошло это задолго до первых работ Норберта Винера. В 1921 году Чапек (автор "Войны с саламандрами", многочисленных юмористических рассказов) опубликовал пьесу "РУР - Россумские универсальные роботы". Герои пьесы - созданные искусственно в лабораториях Россума биологические человекоподобные автоматы. Роботы - назвал их Чапек. И когда четверть века спустя кибернетика делала первые шаги, когда уже ученые и инженеры всерьез задумались о механических подобиях людей, они заимствовали название из произведения фантаста, фактически отдав ему пальму первенства. А всего-то: "обычный" объект (человек) и "обычный" прием искусственности… Что ж, скажет читатель, фантасты, пользуясь приемами развития воображения, умеют предсказывать будущее науки и техники, а астрологи предсказывают будущее личности, общества, пользуясь звездными картами. Согласен, каждому конкретному человеку писатель-фантаст ничего не предскажет - он не занимается частной практикой, а пишет романы. И в этих романах (повестях, рассказах) фантаст детально описывает все, что произойдет с обществом (и человеком в обществе), если сбудется конкретное научно-техническое или социальное предсказание. Что произойдет с нами, если будут действительно построены человекоподобные роботы. Или - если будет создана всемирная компьютерная система.

В фантастике сотни интереснейших идей, связанных с будущим кибернетики. Многие сбылись. Многие сбудутся. Румынский писатель Раду Нор (рассказ "Живой свет", 1959 год) писал о думающей машине размером с молекулу (вспомните прием уменьшения!). Станислав Лем в романе "Непобедимый" - о цивилизации микророботов. Это - седьмое поколение компьютеров, проблема, над которой ученые будут думать всерьез в начале будущего века. Перечитают ли они Лема? Знают ли о существовании приема уменьшения?

Подумайте, пожалуйста над таким вопросом. Астрологи умеют предсказывать будущее людей и стран, экстрасенсы умеют лечить почти все болезни, причем сразу у сотен людей, сидящих в зале. Телепаты общаются с высшими силами. Такие люди были всегда. А наука с техникой насчитывают несколько столетий. Так почему же наш мир - это мир науки и техники, а не мир, где премьер-министр - телепат и экстрасенс (вот уж кто нужен на переговорах с арабами!) и где главный врач клинической больницы - последователь Алана Чумака?

Почему? Ведь они умеют все, а ученые - так мало! И никто еще ведь не отменил естественного отбора - побеждает сильнейший, тот, от кого больше пользы.



Страница сформирована за 0.57 сек
SQL запросов: 169