УПП

Цитата момента



Если человек знает, чего он хочет, он или мало знает, или мало хочет.
Не слишком ли много вы знаете?

Синтон - тренинг центрАссоциация профессионалов развития личности
Университет практической психологии

Книга момента



Женщины, которые не торопятся улыбаться, воспринимаются в корпоративной жизни как более надежные партнеры. Широкая теплая улыбка, несомненно, ценное качество. Но только в том случае, когда она появлялась на лице не сразу же при встрече, а немного позже. И хотя эта задержка длится менее секунды, улыбка выглядит более искренней и кажется адресованной собеседнику лично.

Лейл Лаундес. «Как говорить с кем угодно и о чем угодно. Навыки успешного общения и технологии эффективных коммуникаций»


Фото момента



http://old.nkozlov.ru/library/fotogalereya/s374/
Мещера-2009
щелкните, и изображение увеличится

Но для чего всё-таки нужны все эти подобия— и неподобия, пропорциональности и непропорциональности? Зачем их изучают? Да затем, что правильных пропорций не создашь ничего путного.

Когда архитектор строит дом, он заботится не только о его прочности и удобстве, но и о том, чтобы на него приятно было смотреть. А приятии смотреть на такое здание, где всё соразмерно, где найдены правильные, красивые пропорции. Конечно, найти их нелегко. Для этого надо быть „не только хорошим строителем, но и художником, то есть обладать чувством прекрасного.

Капитан сказал, что чувство это было в высшей степени свойственно древним грекам. Недаром же созданные ими статуи до сих пор остаются недосягаемым образцом в искусстве, точно так же как древнегреческие здания — в архитектуре. И происходит это потому, что греки нашли совершенные, идеальные соотношения между частями человеческого тела. Точно так же умели они находить правильные соотношения между частями зданий. Потому-то найденные ими пропорции называют классическими…

— А почему сейчас архитекторы не строят таких классических зданий? — спросил я.

— Да потому, — сказал капитан, — что всё хорошо в своё время. Мы можем любоваться древнегреческими строениями, но повторять их сейчас было бы глупо. То, что прекрасно, должно быть ещё и удобно. Ведь древние греки жили совсем не так, как мы. У них были иные потребности. Им не нужны были, например, высотные здания, да они и не сумели бы их построить. Кроме того, напрасно ты думаешь, что в наше время классические пропорции забыты. Они используются и в современных зданиях, хотя и не всегда. Потому что рядом со стары ми возникают новые соотношения, новые пропорции… Всё на свете меняется. В том числе и понятие прекрасного.

— Нет, — заявил я, — кое-что всё-таки остаётся неизменным. Это — отношения чисел. Ведь шесть, делённое на два, всегда равно трём!

ИГРА ИЛИ НАУКА?

5 нуляля

Мы с коком гуляли по палубе и смотрели, как Фрегат пробирается среди бесчисленных островов, стараясь Их не задеть. Посреди каждого острова на высоком шесте развевался флаг? А на флагах были написаны разные цифры, Только написаны они были как-то странно: одна цифра под другой, а между ними — черточка:

1/2, 1/3, 1/6, 2/3, 5/6.

Капитан сказал, что так математики записывают дробные числа. Оказывается, числа бывают не только целые. Стоит целое число раздробить на части —и получаются дроби.

Кок сказал, что он-то хорошо знает, как дробить на части. На судне не осталось ни одной целой чашки.

Капитан объяснил нам, что дроби, которые меньше единицы, называются правильными. На флагах этих островов написаны только правильные дроби. Число над чёрточкой называется числителем дроби, число под чёрточкой — знаменателем дроби. Знаменатель показывает, на сколько частей разделён числитель. Например; дробь у показывает, что от единицы взята третья часть. И читается эта дробь так: одна треть.

У правильной дроби Числитель всегда меньше знаменателя, а у неправильной — больше.

Значит, есть дроби, которые больше единицы? Да, есть. Если разделить пять на два, получится неправильная дробь 5/2 — пять вторых. А это всё равно что два с половиной, и записывается так: 21/2. Вот и выходит, что неправильная дробь больше единицы.

— А теперь, — сказал капитан, — посмотрите направо. Перед вами Залив Десятичных Дробей.

Да, оказывается, есть и такие дроби. Это те, у которых знаменатель всегда либо десять, либо сто, либо тысяча… Словом, число, которое делится на десять без остатка.

Коку это очень понравилось, и он заявил, что теперь будет бить чашки только на десятичные осколки.

— А записывать это буду так, — добавил он, —

1/10, 1/100, 1/1000

Верно?

— И верно, и неверно, — ответил капитан. — Десятичные дроби принято записывать иначе, в строчку, если число больше единицы, целую часть его отделяют от дробной запятой. А если число меньше единицы, то перед запятой ставят нуль.

— А где же пишут знаменатель?— спросил я.

— Знаменателя совсем не пишут, — ответил капитан, — его подразумевают. Дело в том, что у десятичных дробей, .как и у .целых чисел, есть разряды. Первый знак после запитой справа указывает, сколько десятых долей в числе, второй — сколько сотых, третий — сколько тысячных, и так далее. Вот, например, 0,2 читается так: две десятых. А 0,02 — две сотых…

щелкните, и изображение увеличится

Под конец капитан попросил нас прочитать такое число: 0,023.

Я ответил, что это .очень легко: нуль целых, нуль десятых, две сотых и три тысячных. Капитан страшно удивился:

— Зачем же читать по складам, когда можно сразу: двадцать три тысячных. Если после запятой число состоит из трёх цифр, значит, подразумевается, что это число надо разделить на тысячу. Вот и всё. А теперь идите-ка чистить картошку.

Мы с коком уселись на корме и принялись за дело. Трудиться здесь приходится вовсю.

Неожиданно похолодало, пошёл снег. Он лез в глаза, мешал работать, к я решил подождать, пока он кончится.

Вдруг — тррррррах! Гром. Один удар, другой, третий… Сверкают молнии. А снег всё идёт. Снег и гроза? Невероятно!!

— А что значит невероятно? — спросил кок.

— Невероятно, —— пояснил я, — это когда совсем невозможно. ,

— Как же невозможно, когда гремит? — засмеялся Пи.

— Это просто случайно. А вообще не бывает.

щелкните, и изображение увеличитсяТут появился капитан и сказал, что я неправ. Всё, что может произойти даже случайно, — всё вероятно. Только иной раз приходится этого очень долго ждать. Тогда говорят, что для такого случая вероятность мала.

— Значит, вероятность можно измерить? — удивился я.

— Конечно. На то и появилась математическая наука — теория вероятностей. Кстати, острова, мимо которых мы идём, принадлежат архипелагу Вероятностей.

— Что ещё за архипелаг? — спросил я.

— Ах да, я и забыл, что вы ещё этого не знаете, — улыбнулся капитан. — Архипелагом называется скопление островов.

Снег кончился, и Фрегат пришвартовался к острову, на флаге которого красовалась дробь 1/2 — одна вторая, иначе говоря — половина. Какой-то половинчатый остров!

Жители встретили нас приветливо, но мне почудилось, что им не до гостей. Оказалось, что все они играют в шахматы, и даже не играют, а только бросают жребий, кому играть белыми! Один зажмёт в каждом кулаке по фигуре и предлагает приятелю угадать: где белая? И оба радуются, когда угадывают.

Капитан попросил игроков дать и ему две пешки; зажал каждую в кулаке и спросил кока: в какой чёрная? Тот ответил: в правой, но ошибся. Тогда я сразу отгадал, что чёрная в левой руке, и решил, что игра пустяковая. Но капитан сказал, что вовсе не пустяковая.

—Дело в том, — продолжал он, — что на этом острове отгадывают цвет шахматных пешек. Но так как их всего два — чёрный и белый, — а угадать надо только один из двух, то и говорят, что вероятность угадывания равна отношению одного к двум, то есть 1/2. Вот почему на флаге этого острова написана эта дробь. А если бы перед нами было не две, а несколько разноцветных пешек — красная, зелёная, синяя, жёлтая и так далее, то угадать, какая из них зажата в руке, было бы уже гораздо труднее. В этом случае вероятность угадывания уменьшается.

И капитан повёз нас на остров, обозначенный дробью одна шестая: 1/6. Жители его играли в кости. У игроков были костяные чёрные кубики. На каждой из его шести сторон нарисованы белые точки: на одной стороне — одна, на другой — две, и так до шести. Точки эти называются очками. Один игрок подбросит кубик, а другой загадывает, сколько выпадет очков.

Понятно, что угадывали на этом острове гораздо реже, чем на чем на первом. И я догадался, что вероятность угадывания здесь равна отношению одного к шести, то есть 1/6.

— Верно, — сказал капитан и спросил, какова будет вероятность угадывания, если задумать, чтобы выпало либо два очка, либо четыре.

И я опять догадался, что тогда и вероятность станет вдвое боль шей. Она будет равна уже не 1/6, а 2/6. А это всё равно что одна треть — 1/3.

— А вот что будет, если задумать, чтобы выпало ЛЮБОЕ число очков?

— Тогда нужно ехать на другой остров, — ответил капитан, — на остров Достоверностей. Вон тот, с синим флагом.

Только теперь я заметил синий флаг, на котором красовалась не дробь, а единица. Это почему же?

— Да потому, — пояснил капитан, — что тебе нужно, чтобы из шести возможных случаев выпал любой. Значит, вероятность угадывания равна отношению шести к шести: 6/6 — стало быть, единице. А это уже достоверность, то есть то, что произойдёт непременно.

В это время кок заметил остров, над которым развевался чёрный, флаг с большим белым нулём посередине. Капитан сказал, что это остров Невероятностей, то есть остров, где вероятность угадывания равна нулю.

— Как же это может быть? — спросили мы с коком одновременно.

— А вот как, — ответил капитан. — Предположим, кто-нибудь из вас загадает, чтобы у этого кубика выпало СЕМЬ очков.

— Но это невозможно! — воскликнул я. — Ведь у кубика самое большое число очков — шесть.

— В том-то и дело, — обрадовался капитан. — Стало быть, семь выпасть не может. Значит, в этом случае нет никакой вероятности, что вы отгадаете. Вероятность равна нулю!

Интересная игра — теория вероятностей! Но капитан возмутился и сказал, что это не игра, а наука. Хотя и родилась она из игры. Так частенько бывает. И ещё он сказал, что теория вероятностей помогает учёным, инженерам и особенно экономистам, что она необходима народному хозяйству страны и что мы в этом очень скоро убедимся.

Когда мы вернулись на Фрегат, Пи спросил меня: какова вероятность, что обед будет готов вовремя? Ведь картошки-то мы так и не начистили! Ясно: вероятность равна нулю.

КАКОЙ У ВАС НОМЕР БОТИНОК?

6 нуляля

Сегодня мы попали на Землю Статистики. Странная это земля: куда ни поглядишь — всюду числа, числа, числа… В какое здание ни войдёшь — везде что-то подсчитывают. На счётах. На арифмометрах, На электронно-счётных машинах. Без конца звонят телефоны, поступают телеграммы, радиограммы, приносят какие-то пакеты…

Капитан привёл нас в новый просторный дом. Здесь в одной из комнат за столом сидел Старший статистик. Мы познакомились. Но только я собрался атаковать его вопросами, как зазвонил телефон. Старший статистик взял трубку.

— Да-да, это я. Я просил сообщить, сколько в прошлом году роди лось мальчиков. Сколько вы говорите? Ага. А девочек? Угу. Благодарю вас. До свидания.

Не успел он положить трубку, как телефон зазвонил снова. На этот раз сообщали, какого роста мужчины работают на макаронной фабрике.

— 460 человек — 165 сантиметров,—записывал статистик. — 380 человек — 170 сантиметров… А один — двух метров? Я не ошибся? Ха-ха! Ну что ж, так и запишем…

До чего любопытные люди живут на Земле Статистики. Всё им нужно знать!

— А как же,— сказал Старший статистик, — ведь у нас хозяйство плановое. Поэтому нужно заранее подсчитать, сколько построить новых школ, сколько сшить форменных костюмов для школьников, сколько пар ботинок, сколько, наконец, понадобится футбольных мя чей, волейбольных сеток, да Мало ли чего ещё! На все эти вопросы отвечает статистика.

— Вас послушать, без статистики хоть ложись да помирай.

— Конечно, — отвечал Старший статистик, ничуть на меня не обидевшись, — статистика имеет отношение решительно ко всему.

— Даже к ботинкам?

Понятно, я сказал это для смеха. Но Старший статистик совершенно серьёзно подтвердил, что статистика и вправду играет не последнюю роль в производстве обуви. Ведь обувь носят все: и пионеры, и пенсионеры, Даже грудным младенцам, которые вовсе ещё не умеют ходить, и тем надевают пинетки. Стало быть, надо знать, сколько изготовить обуви мужской, сколько женской, а сколько — для детей. Но это ещё не всё. Для разных возрастов шьются разные фасоны обуви. Кроме того, ноги у разных людей разные. И по форме, и по размеру.

Тут я окончательно запутался. Капитан говорит, что на земле три миллиарда жителей. Неужели статистики перемерили все ноги на свете? Вот когда я наконец рассмешил нашего собеседника!

— Зачем измерять все ноги? — сказал он, насмеявшись всласть. — Достаточно измерить длину стопы хотя бы у тысячи взрослых мужчин, Чтобы знать, сколько потребуется мужской обуви разных номеров вообще.

— А по-моему, недостаточно, — сказал Пи. — У одной тысячи так, у другой — этак…

— Замечание дельное, — согласился Старший статистик. — Но тут на помощь статистикам приходит математика.

Наконец-то добрались до математики! А то все про ботинки да про пинетки…

— Математики подметили, — продолжал Старший статистик, — что размеры; стопы у населения подчиняются определённой закономерности. Эту закономерность они назвали законом распределения.

Он указал на плакат, где были нарисованы обувные коробки. Коробки стояли аккуратными столбиками. Самый большой столбик находился посередине, и под ним было написано: «№41». Столбики, стоявшие по бокам от него, становились всё ниже. При этом справа номера ботинок увеличивались, слева уменьшались. Все коробки поверху были очерчены жирной красной линией, сильно смахивающей на ледяную горку. Вот бы с такой да на салазках!

— Видите, — сказал статистик, — больше всего у нас требуются ботинки сорок первого размера, меньше всего — сорок седьмого и тридцать Седьмого.

— А.что означает красная линия? — спросил я.

Оказалось, это кривая, которую нашли математики с помощью закона распределения.

щелкните, и изображение увеличится

— Но откуда вы знаете; что математики не ошиблись? — прищурился Пи.

— Сама жизнь подтвердила, что кривая, полученная математическим путём, достаточно точно выражает потребности населения.

— Значит, вам не приходится гадать, сколько очков выпадет на кубике, как это дела ли обитатели архипелага Вероятностей! — вставил капитан.

Статистик просто в восторг пришёл от его столь тонкого замечания.

— Архипелаг Вероятностей! Как вы о нём вовремя вспомнили! Ведь Земля Статистики находится с ним в самой тесной дружбе! Всеми своими удачами, всеми математически ми открытиями, статистика целиком обязана теории вероятностей. Собственно говоря, математическая статистика — это та же теория вероятностей, в которой действует закон больших чисел. Статистика делает выводы из огромного числа наблюдений, измерений — словом, из целого вороха беспорядочных, хаотических сведений. И в этом-то хаосе она находит порядок, закономерности. Вот почему теория вероятностей постепенно приобретает всё большее значение в современной науке.

Да, прав был капитан, когда сказал, что наука иной раз возникает из игры. Ведь и теория вероятностей началась с обыкновенной игры в кости…

БЕСКОНЕЧНЫЕ КАПРИЗЫ

7 нуляля

Сегодня, когда мы плыли морем Бесконечности, справа по борту неожиданно появилась земля, и мы увидели на берегу какое-то странное бородатое существо. Я решил, что это опять Нептун, но капитан сказал, что Нептун никогда не сидит на берегу и что надо обязательно выяснить: кто это такой?

Спустили шлюпку, и мы с капитаном немедленно отправились на берет.

Бородач оказался матросом с каравеллы, затонувшей 150 лет назад! Его подобрали чуть живого, и с тех пор правитель острова заставляет этого матроса ежедневно выполнять одну и ту же работу. Правитель ещё молод, ему 3183 года. У него двое детей: мальчику 2185 лет, а девочке пошел 1232-й годик. Я, понятно, удивился, а Единица пояснил, что, на берегу моря Бесконечности живут вечно.

Я спросил у матроса, что заставляет его делать правитель.

— И не говорите, — вздохнул матрос. — Матрёшек!

— Каких матрёшек?

— Обыкновенных. Деревянных. За 150 лет я сделал 109 575 штук! Сто девять тысяч пятьсот семьдесят пять. А им всё мало!

— Кому — им?

— Деткам правителя. Это самые капризные дети на свете. Вечно они всем недовольны, вечно делают друг другу наперекор. Когда меня в первый, раз привели во дворец, правитель сказал: «Сделай такую игрушку, чтоб она понравилась и сыну и дочери. У них четыре миллиарда триста восемьдесят две игрушки, но ни, одна им не нравится. «Даю тебе ночь сроку: сделаешь игрушку по вкусу?— награжу, не сделаешь— не взыщи». Всю ночь я думал, что бы такое смастерить, А под утро выточил маленькую матрёшку. Дорисовал ей личико, платочек, сарафан и понёс во дворец. Детям матрёшка понравилась. Сын говорит: «Игрушка хороша, но… слишком мала. Сделай её ровно вдвое больше». И дочка соглашается: «Хороша игрушка, только сделай её ровно вдвое меньше». Правитель дал ещё ночь сроку. Выточил я к утру две новые матрёшки — одну вдвое больше первой, вторую — вдвое меньше. Принёс во дворец. Сын как закричит на меня: «Ты что — глухой?! Я велел сделать матрёшку не вдвое, а втрое больше!» И дочка напустилась: «Я приказала выточить матрёшку не вдвое, а втрое меньше!» Так я и сделал. Наутро всё повторилось заново: сын сказал, что заказывал матрёшку вчетверо больше первой, а дочь твердит: нет, вчетверо меньше! И пошло! Она требует матрёшку в пять раз меньшую, он — в пять раз большую,, затем в шесть, в семь раз… в тысячу! Каждую ночь я делаю по две матрёшки и всё не угожу. Я их здесь на берегу и расставляю. Вот они, друг за дружкой по росту стоят.

И правда, на берегу выстроилась длиннющая вереница матрёшек. Вправо — одна другой больше. Это матрёшки для мальчика. Влево — одна другой меньше. Это матрёшки для девочки. Все они перенумерованы. На средней стояло число 1. Числа справа росли: 2, 3, 4, 5, 6… 100… 1000… Эти числа показывали, во сколько раз каждая матрёшка больше первой.

щелкните, и изображение увеличится

Слева числа уменьшались и были все меньше единицы.. Они показывали, во сколько раз каждая матрёшка била меньше первой. Поэтому на них были написаны дробные числа: одна вторая, одна треть, одна четверть, одна пятая… одна сотая… одна тысячная — ½, 1/3, ¼, 1/5…1/100…1/1000…

Матрёшек собралось так много, что крайние были едва видны.

— Когда-нибудь должен же наступить конец этим капризам! — сказал я.

Матрос только понурился:

— То-то и оно, что здесь ничему не бывает конца! Капризы, как и числа, никогда не кончаются. Какое бы большое число ты ни придумал, всегда найдётся ещё большее. Какое ни возьмёшь маленькое, ,'ан сыщется еще меньше. Одни матрёшки превратятся со временем в великанов, другие — в карликов, а я всё ещё буду мастерить новых…

— Ну хорошо, пусть числа уменьшаются бесконечно. — сказал я,— но как же выточить такую малюсенькую, крохотулешную матрёшку, которой и не видно вовсе?

— На то я и волшебный мастер, — ответил матрос.

Тут мы услышали голоса. Матрос посоветовал нам поспешить на Фрегат, не то правитель и нас заставит что-нибудь смастерить, и тогда…

Когда Фрегат был уже далеко, мы увидели, что на берегу стояла только одна, самая большая матрёшка. Всех остальных матрос успел упрятать в неё. А вот какое число было на ней написано, этого я не разглядел. Может быть, вы догадаетесь? Вспомните, что матрос в первую ночь выточил ОДНУ матрёшку, а потом каждую ночь вытачивал по ДВЕ. А за все 150 лет он выточил… Впрочем, сколько он выточил об этом я уже написал.

КАПИТАН СРЕДИ ДРУЗЕЙ

8 нуляля

Нынче я много веселился и очень устал. Восьмое нуляля — день рождения нашего капитана. Штурман Игрек специально подгадал, чтобы именно сегодня Фрегат подошёл к мысу Единиц.

Мы сошли на берег и сразу очутились в весёлой праздничной толпе. Нас окружили Единицы — десятки, сотни— Единиц. Ещё на Фрегате я подумал: как это, должно быть, скучно если перед глазами одни Единицы. Но я ошибся: ни одна Единица не была похожа на другую. Кроме того, все они были совершенно по-разному и очень красиво одеты.

Кок решил, что они расфуфырились в честь нашего капитана, но штурман сказал, что они всегда такие и что это не просто Единицы, а…

Тут я громко ойкнул, потому что кто-то больно дёрнул меня за руку. Я обернулся и увидел Единичку, которая смущённо извинялась; она и не думала никого дёргать — это я сам до неё случайно дотронулся! Оказалось, что это единица силы электрического тока — ампер. Так её назвали в честь знаменитого французского физика и математика Андрэ Мари Ампера.

Вот оно что! Оказывается, электрический ток бывает разной силы! Тут штурман, который всё дожидался возможности продолжить прерванный разговор, повторил, что на этом мысе живут не просто Единицы, а различные единицы измерения. А измеряется на белом свете всё: и сила, и скорость, и работа, и время, и температура, и объём… Но для того чтобы что-нибудь измерить, надо выбрать удобную единицу измерения. Часто для измерения одной и той же величины применяются разные единицы: сантиметр, метр, фут, миля — всё это единицы длины. Время измеряют и секундами, и часами, и годами, и веками; силу, вес — килограммами и ньютонами. Единица «ньютон» получила своё название в честь великого английского учёного Исаака Ньютона.

Метр, секунда, ньютон — всё это общепринятые единицы измерения простейших величин: длины, времени, силы. А измерять приходится кое— что и посложнее. Вот, например, скорость. Что это такое? Это путь, пройденный за единицу времени. Чтобы измерить скорость, надо дли ну пути разделить на время, за которое этот путь пройден. Стало быть, в измерении скорости участвует не одна простейшая единица измерения, а две: метр и секунда. Так образуется составная единица измерения скорости: метр в секунду.

А вот чтобы измерить работу, надо перемножить единицы силы и пути, то есть килограмм и метр.

Почему? Да потому что работа зависит от двух причин: от силы и расстояния. Чем больше груз, тем больше и работа. Однако и маленький груз может заставить нас изрядно поработать, если надо передвинуть его далеко. Поэтому и измеряют работу в килограммометрах.

Тут по радио объявили: «Сейчас 736 смельчаков вступят в единоборство с лошадью!» Хорошенькое ЕДИНОборство — 736 на одного!

Толпа расступилась, и смельчаки выбежали на площадь. У каждого на голове была электрическая лампочка, на груди написано: «ватт». Как у спортсменов: «Спартак» или «Динамо».

Капитан объяснил, что ватт — это тоже единица измерения. В ваттах обычно измеряют не силу, а мощность электрического тока.

Но разве мощность и сила — не одно и то. же? Ничего подобного! Мощность, сказал капитан, это та работа, которую ты можешь совершить за единицу времени — иначе говоря, скорость работы. Чем больше мощность, тем меньше времени затрачивается на работу.

Тут как раз привели лошадь. Так вот она какая! Я в первый раз увидел живую лошадь, а то всё автомобили, самолёты, ракеты… Лошадь была с хвостом! А хвост пышный, длинный и так причёсан, будто только что вышел из парикмахерской!



Страница сформирована за 0.11 сек
SQL запросов: 170